
CompClustTk

Manual & Tutorial

Brandon King

Copyright c©California Institute of Technology

Version 0.1.10
May 13, 2004

Contents

1 Introduction 1

1.1 Purpose . 1

1.2 CompClust Background . 1

1.3 Where to get help? . 1

2 Tutorial Background 2

2.1 Microarray Data . 2

2.2 CompClust Datasets . 2

2.3 CompClust Labelings . 2

2.4 Cho Example Data . 3

3 CompClustTk 4

3.1 Introduction . 4

3.2 Load Data Set . 5

3.3 Attach Labelings . 7

3.4 Clustering . 10

3.4.1 Introduction to Clustering . 10

3.4.2 DiagEM . 11

3.4.3 KMeans . 13

3.5 Analysis . 14

3.5.1 Introduction . 14

3.5.2 Trajectory Summary . 14

3.5.3 Confusion Matrix . 20

3.5.4 ROC Analysis . 26

3.5.5 PCA Explorer . 26

3.6 Advanced Analysis - IPython . 26

3.6.1 Python Introduction . 26

3.6.2 compClust Python Package . 26

4 More of CompClust 27

4.1 Other CompClust Tutorials . 27

4.1.1 A Quick Start Guide to Microarray Analysis using CompClust 27

4.1.2 A First Tutorial on the MLX schema . 27

5 Acknowledgements 28

1 Introduction

1.1 Purpose

CompClust provides utilities designed around the needs of biologists to mine microarray data gener-
ally. Specifically CompClust focuses on gaining a more quantitative and qualitative understanding of
clustering results and the relationships between them. Initially the software has been developed as a
set of python modules suited particular well for use both interactively from with in the python inter-
preter or to write analysis scripts. The generality of these modules has proved to be useful in many
applications within our lab for bioinformatics and genomic analysis. Although the most powerful and
flexible way to use CompClust is directly via the python command line interface we have constructed
CompClustTK as a more familiar graphical user interface (GUI) to many of the most useful analysis
tools. CompClustTK focuses on the analysis tools for comparative cluster analysis as described in (?).

This tutorial is for CompClustTK specifically. Other tutorials and documentation have been written
as an introduction to using CompClust via the python interpreter directly.

1.2 CompClust Background

CompClust is a Python package written using the pyMLX and IPlot APIs. It provides software tools
to explore and quantify relationships between clustering results. Its development has been largely built
around requirements for microarray data analysis, but can be easily used in other domains.

Briefly, pyMLX provides efficient and convenient execution of many clustering algorithms using an
extendable library of algorithms. It also provides many-to-many linkages between data features and
annotations (such as cluster labels, gene names, gene ontology information, etc.) These linkages are
persistent through data manipulations. IPlot provides an abstraction of the plotting process in which
any arbitrary feature or derived feature of the data can be projected onto any feature of the plot,
including the X,Y coordinates of points, marker symbol, marker size, marker/line color, etc. These
plots are intrinsically linked to the dataset, the View and the Labeling classes found within pyMLX.

1.3 Where to get help?

If you need help with CompClustTk or CompClust visit http://woldlab.caltech.edu/compClust/.

Or you may send e-mail to Chris Hart (hartATcaltech.edu) or Brandon King (kingbATcaltech.edu).

1

2 Tutorial Background

2.1 Microarray Data

Users unfamiliar with microarrays in general are encouraged to familiarize themselves with the the
biology and technology behind the data. For this tutorial we assume the microarray data is gene
expression measurements across several different conditions (eg. Different time points, different cell
types, different treatments, etc.). The data will be needed to formatted into a gene expression data
matrix, where each row is represents a gene and each column represents a differnt condition. A row in
that matrix represents a gene expression vector, or the expression measurements for that gene across
every assayed condition.

2.2 CompClust Datasets

CompClust Datasets contain vectors of data, which can be loaded into CompClustTk through a simple
tab delimited text format.

Take microaray data for example. If you’ve done an experiment with four time points; hours 1, 2, 4,
and 8. The columns of your data set are the time points and the rows are the individual genes (see
below).

Hour 1 Hour 2 Hour 4 Hour 8

0.72 0.56 0.32 0.06
0.01 0.15 0.80 0.73
0.97 0.95 0.91 0.94

Loading the above data set into CompClustTk and then running a Trajectory Summary plot (see
section 3.5.2), you would see that the first gene’s trajectory (vector) starts high and gets lower of the
four time points. Formatting your data into a tab delimited formated similar to the one shown above
will allow you to load your own data sets into CompClustTk.

2.3 CompClust Labelings

Adding a new labeling to any data set is fairly easy. All you need to do is make a tab delimited text
file with either one row or one column depending on what type of labeling is appropriate. The only
restriction is that labeling must be the same dimensions as it’s data set.

For example, if you wanted to add a ’Gene Name’ labeling to the data set in section 2.2. You would
need a row labeling... i.e. one column with three labels to match the three rows in the data set. Below
is an example of this labeling.

Gene Name 1
Gene Name 2
Gene Name 3

If you wanted to make your own cluster labeling (group labeling), you would reuse the same label in
one or more rows. For example if I wanted to create a cluster labeling which groups Gene 1 and Gene
2 in one group and Gene 3 in another group, I would create the following row labeling.

Cluster 1
Cluster 1
Cluster 2

One may wish to keep around the time point hours as column labeling as well. To do this, create a
2

tab delimited text file with one row as shown in column label below.

Hour 1 Hour 2 Hour 4 Hour 8

One of the beauties of CompClust is you can attach as many labels as you can think of. In Comp-
ClustTk you will see dialog boxes asking you to select cluster labelings, which are row labelings which
separates your data into groups. And you will be requested for primary and secondary labelings, which
are basically arbitrary row labelings which you may wish to attach. For example, when viewing gene
expression data in a plot, you may wish to attach a primary labeling of gene names and a secondary
labeling of descriptions.

Column labelings currently can only be taking advantage of by using CompClust from Python, but in
the future, these features may be exposed the CompClustTk.

2.4 Cho Example Data

CompClustTk uses example data collected from Cho et. al., 1998. Breifly they synchronized yeast
cells using a CDC28 temperature sensitive mutant. After releasing the yeast cells from arrest they
colllecte RNA from the cells every 10 minuetes as the cells underwent two rounds of cell division. Using
affymetrix arrays they assayed the gene expression profile of every gene in yeast during this experiment
(Cho et al., 1998). The resulting gene expression matrix has roughly 6000 genes by 17 time points.
We provide a subset of this matrix which includes a total of 380 genes that were both selected by the
authors to exhibit cell cycle dependency and meet a minimal noise threshold (Hart and Wold, 2004).
Hart et. al. 2004 provides a introduction and theoretical basis for these tools and also provides a case
study highlighted the types of biological insights that can be gleened from analysis simular to those
described here.

3

3 CompClustTk

3.1 Introduction

CompClustTk was designed to expose the basic functionality of CompClust. The idea is to bring the
CompClust analysis environment to the biologist. Previously, a basic knowledge of Python program-
ming was required in order to use CompClust. This is still true for some of the most advanced analysis
one may wish to do.

We hope that CompClustTk will simplify learning to use CompClust by allowing the user to use
CompClust without knowing any Python. If you find CompClustTk too limiting, there are a few tools
which will help you to adjust to using Python along with the GUI to do more advanced analysis. When
ever you trigger an action, the Python code you would have used to do the same thing in pure Python
will be stored in the ’Analysis History’ section (View—Toggle Analysis History).

For those of you who are feeling daring or just don’t like GUIs that much, you can use iPython to
access the internals of the GUI, including any data sets or labelings which you have loaded.

In the following sections of this tutorial, we will be using the Cho et. al., 1998 Cell Cycling data
mentioned above located in your CompClustTk/Examples/ChoCellCycling directory.

4

3.2 Load Data Set

The first thing we need to do after loading CompClustTk is to load a data set to work with. Click on
’File—Load Data’ Set from the menu.

Figure 1: CompClustTk File — Load Data Set

5

Locate the file named ’ChoCycling.dat’ and click ’Open’.

Figure 2: Load Data Set Dialog

If everything went well, you should see a dialog box like the one below telling you the dimensions of
the data set you have just loaded. Make sure that the numbers look reasonable, otherwise it may be
a sign that your data set was not formatted properly.

Figure 3: Load Data Set Complete

6

3.3 Attach Labelings

Once you have successfully loaded your data set, it will be useful to attach additional information to
the data set. The generic name for these annotations is ’Labelings’.

First, let’s load the Gene row Labeling so we will be able to know which rows (vectors) represent which
genes. Select ’File—Load Labeling’ as shown below.

Figure 4: Load Data Set Dialog

7

The Load Labeling dialog box requires a little more information than the Load Data Set dialog box.
Later when you are running an analysis, you will need to select one or more labelings to use, so you
should choose a Labeling name which is meaningful. Also, you must tell the program whether you plan
to load a row or column labeling (See section 2.3 for more information about CompClust labelings).

Figure 5: Load Labeling Dialog

Give your Gene Labeling a name like ’blah’, press browse and select the file named ’Common-
Names.rlab’ and then choose the ’Row’ radio button as shown below.

Figure 6: Load Labeling Dialog — Gene Names

8

Click ’Load’ when you are ready. You should see a dialog box similar to the one below if your Labeling
loads successfully.

Figure 7: Gene Name Load Labeling Complete

Later when we start analyzing our data, we will compare our clustering results (Coming up in section
3.4) to classifications made by Cho. We should attach the Labeling file ’ChoClassification.rlab’ as
shown below.

Figure 8: Loading Cho Classification Labeling

9

3.4 Clustering

3.4.1 Introduction to Clustering

Clustering Algorithms are a general class of unsupervised machine learning techniques which attempt
to find an approximation to the optimal partition (or seperation) of a given data set into discrete
classes or clusters. An optimal partition is is defined as the partitioning for which each data vector
in a cluster is more simular to all other data vectors with the same cluster memberships than to all
other data vectors with different cluster memberships. It can be shown that this problem is NP-hard
(computationally untracktable, if you think about it, to be certain you have found the ‘”true” optimal
clustering you would have to search through all possible clusterings - a very large number as the number
of data points becomes big.).

In the context of microarray data analysis clustering has become a staple technique to provide insights
into which genes have simular behavior across the conditions being assayed. Clusters essentially form
groups of co-expressed genes, using these data as a starting point biologists can then start to address
the more interesting questions regarding why these genes are coexpressed. Are the co-regulated func-
tionally, part of simular biochemical pathway, etc. The comparitive tools provide utilities to explore
the effects of both what experimental pertabations might have on clustering but also how different
algorithms differ from each other on how they partion the genes. This can have potentially profound
effects on downstream analysis.

Although we don’t stress it in this tutorial, you can cluster conditions just as easily as you can cluster
conditions and the same methods apply.

10

3.4.2 DiagEM

The first clustering program we will use is DiagEM. We will use most of the default parameters, but
we will change the number of clusters we would like DiagEM to create. Change K from two (default)
to five as we will compare our results to the Cho Classification, which has been partitioned into five
clusters which represent five stages of the yeast cell cycle.

Choose ’DiagEM’ from the ’Clustering’ menu and then change K from 2 to 5 as shown below.

Figure 9: Clustering—DiagEM

11

When clustering is finished you should see a dialog box pop up similar to the one below.

Figure 10: Clustering—DiagEM

12

3.4.3 KMeans

Since every clustering algorithm is different, each one may return different results. We will compare
the results of KMeans with DiagEM and Cho’s classifications in the analysis section of this tutorial.
Select ’KMeans’ from the ’Clustering’ menu and then change K from 2 to 5. Click ’Cluster’ to begin
clustering. The KMeans dialog should be similar to the one shown below.

Figure 11: Clustering—KMeans

13

3.5 Analysis

3.5.1 Introduction

Okay, so we have labelings, both ones that we have loaded, but also labelings created by DiagEM and
KMeans. In section 3.5 we will explore the data and view/compare the results of clustering. This will
be done with a tool called IPlot which is one of the components of CompClust written by Chris Hart.

At any time if you feel you have too many Tabs open, or you are done with a plot, select ’Close Current
Tab’ from the ’Tabs’ menu.

3.5.2 Trajectory Summary

The Trajectory Summary is a great tool for viewing your data. Given a Cluster Labeling and a Gene
Labeling, this tool will allow you to easily visualize and explore your data set.

Let’s start by choosing ’Trajectory Summary’ from the ’Analysis’ menu. To start, select ’Cho Classifi-
cation’ for the ’Cluster Labeling’. So that we know which row (vector) represents which Gene, choose
’Gene Names’ for ’Primary Labeling’. The ’Primary Labeling’ is the labeling which is displayed when
you click on an individual vector. Click ’Plot’ when you are ready to view the Trajectory Summary.

Figure 12: Clustering—KMeans

14

Your ’Cho Classification’ Trajectory Summary should look similar to the image below. You should
have five clusters separating the gene expression data into five stages of the yeast cell cycle. The blue
lines are the mean trajectory for a given cluster. The red lines are the standard deviation from the
mean.

This is a helpful view to get an idea of what your clusters are doing, but if you want a more detailed
view, click on the ’Plot All’ button. In this case, lets look at the ’Late G1’ cluster. Click on ’Plot All’
for the ’Late G1’ cluster now.

Figure 13: Clustering—KMeans

15

You should get a plot that looks like the following. The coloring of the trajectories is based on the
expression level at time 0 by default. In a future version we may expose the ability to easily change
the coloring schema within the GUI itself, but for now if you have the desire to change the coloring,
you will have to use the ’Analysis Shell’ which is discussed in section 3.6.

Figure 14: Plot All - Late G1

16

If you click on any point in the plot, a box in the top right will show up with the text ’Gene Name:
(x-cord, y-cord)’. Click on the point shown in the diagram below and you should see ’SCW11: (10.00,
4.92)’. If you control click on the point shown below, a new dialog box appears showing the trajectory
for ’SCW11’ as shown in Figure 16 on the next page.

Figure 15: Plot All - Late G1 - SCW11

17

Note that at the bottom of the figure below, there are two Labelings, ’Gene Names’ and ’Cho Classi-
fication’. If you click on the ’Gene Names’ labeling you should see a pull down menu show up in the
bottom right. If you then change this from ’default display’ to ’Highlight This Group’, this gene will
be highlighted in your ’Late G1 - Plot All’ display as shown in Figure 18 on the next page.

Figure 16: Plot All - Late G1 - SCW11

18

At this point you can ’Ctrl + Click’ on other gene vectors and highlight them as well. This is all we
will cover on the Trajectory Summary Plot for this tutorial. Feel free to explore more on your own or
continue on to the next section of the tutorial.

Figure 17: Plot All - Late G1 - SCW11 Highlighted

19

3.5.3 Confusion Matrix

Now that we have an idea of what our clusters look like from the Trajectory Summary Plots, we will
compare the ’Cho Classification’, ’DiagEM w/ K=5’, and ’Kmeans w/ K=5’. This will be done using
a Confusion Matrix Plot.

For starters, let’s compare the ’Cho Classification’1 to itself. Select ’Build Confusion Matrix’ from the
’Analysis’ menu. Then select ’Cho Classification’ for the ’1st Clustering Labeling’ and ’2nd Clustering
Labeling’ as shown in the figure below. Click ’Plot’ when you are ready to move on.

Figure 18: Confusion Matrix Dialog - Cho vs. Cho

1See section 3.3 for information on loading labelings.
20

You should get a Confusion Matrix plot similar to the following figure. Notice that there are two
’Trajectory Summary’ sections being displayed with white backgrounds (top row and last column).
Each one of these sections is a clustering, in this case ’Cho Classification’ versus itself. If you look
at the five clusters in the top row, you’ll notice that I have super-imposed green and red bars in the
figure below. The green bars are highlighting the number of genes2 in a given cluster. The red bars
are highlighting the name of the clustering.

Figure 19: Confusion Matrix Tab - Cho vs. Cho

2CompClust is capable of supporting other types of data beyond gene expression data.
21

What is this matrix telling us? It’s showing us the number of members of column Y that are showing
up in row X. For example, if we look at column 2 (M Phase Cluster) and compare it to row 2 (S Phase
Cluster), we see that the ’M Phase Cluster’ has no members that are shared with the ’S Phase Cluster’
(see figure below). Later when we compare our clustering results to Cho’s, things won’t be as clear as
this. If you look at row 1 (Late G1) vs column 5 (Late G1) you’ll see that 134 out of 134 members are
shared between the two clusters (because they are the same cluster).

Figure 20: Confusion Matrix Tab - Cho vs. Cho

22

Now let’s move onto a more interesting comparison. Let’s compare the ’Cho Classification’ to our clus-
tering of ’DiagEM w/ K=5’3. Select ’Build Confusion Matrix’ from the ’Analysis’ menu. Then select
’Cho Classification’ for the ’1st Clustering Labeling’ and ’DiamEM...k=5...’ for the ’2nd Clustering
Labeling’ as shown in the figure below. Click ’Plot’ when you are ready to move on.

Figure 21: Confusion Matrix Dialog - Cho vs. DiagEM

3See section 3.4 if you haven’t run DiagEM yet.
23

As you can see from the figure below, you get a much more interesting plot. We have ’DiagEM’ on the
X axis and ’Cho Classification’ on the Y axis. Note that DiagEM gave the clusters numeric labelings
as it had no way of knowing any biologically related information for naming purposes. That would be
the job of the user to try to figure that out.

I’ll start by describing the coloring scheme. The colors range from red to blue, where pure red is 0% of
the members for a given row and column are shared by the two clusters. Pure blue would mean that
100% of the members are shared between the two clusters. If we look at column 1 (DiagEM Cluster
#4) and compare it to row 2 (Cho’s S Phase Cluster) we see that 2 out of 13 (15.38%) members are
shared between the two clusters, which is why it has an orange color. 4

Figure 22: Confusion Matrix Tab - Cho vs. DiagEM

4Note that all color calculations are based on all the comparisions for a given column. If you were to redo this plot
as ’DiagEM’ vs ’Cho’ instead of ’Cho’ vs ’DiagEM’, the results will probably be very similar, but the color coding may
change significantly. If we looked at the same comparison of ’DiagEM Cluster #4’ vs ’Cho’s S Phase Cluster’ in the
’DiageEM’ vs ’Cho’ plot, the color would be calculated as 2 out of 74 (2.70%), which would make it much more red than
it is in our current plot.

24

If you look at column 5 (DiagEM Cluster #2) vs row 1 (Late G1) on the figure on the previous page,
you will notice that 117 members out of 151 are shared between the two clusters.

25

3.5.4 ROC Analysis

To Be Written

3.5.5 PCA Explorer

To Be Written

3.6 Advanced Analysis - IPython

3.6.1 Python Introduction

To Be Written

3.6.2 compClust Python Package

To Be Written

26

4 More of CompClust

4.1 Other CompClust Tutorials

The following tutorials can be found at http://woldlab.caltech.edu/compClust/.

4.1.1 A Quick Start Guide to Microarray Analysis using CompClust

”A Quick Start Guide to Microarray Analysis using CompClust” written by Christopher Hart, covers
how to use the Python CompClust environment to do microarray analysis. It may give you a better
understanding of the IPlot tools (Trajectory Summary, Confusion Matrices, etc.). It will also teach
you how to use some of the more advanced features of CompClust which haven’t been exposed to
CompClustTk.

4.1.2 A First Tutorial on the MLX schema

”A First Tutorial on the MLX schema” written by Lucas Scharenbroich, covers the MLX schema. If
your want use the full power of compClust using python.

27

5 Acknowledgements

References

Cho, R. J., Campbell, M. J., Winzeler, E. A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg,
T. G., Gabrielian, A. E., Landsman, D., Lockhart, D. J., and Davis, R. W. (1998). A genome-
wide transcriptional analysis of the mitotic cell cycle. Mol Cell, 2(1):65–73. (eng).

Hart, C. and Wold, B. (2004). In preparation. In preparation.

28

