X-Git-Url: http://woldlab.caltech.edu/gitweb/?p=pysam.git;a=blobdiff_plain;f=samtools%2Fbam_maqcns.c.pysam.c;fp=samtools%2Fbam_maqcns.c.pysam.c;h=513a25113ddfd3a94536fba9c11e89c5365cd5c1;hp=0000000000000000000000000000000000000000;hb=e1756c41e7a1d7cc01fb95e42df9dd04da2d2991;hpb=ca46ef4ba4a883c57cea62d5bf1bc021f1185109 diff --git a/samtools/bam_maqcns.c.pysam.c b/samtools/bam_maqcns.c.pysam.c new file mode 100644 index 0000000..513a251 --- /dev/null +++ b/samtools/bam_maqcns.c.pysam.c @@ -0,0 +1,628 @@ +#include "pysam.h" + +#include +#include +#include "bam.h" +#include "bam_maqcns.h" +#include "ksort.h" +#include "errmod.h" +#include "kaln.h" +KSORT_INIT_GENERIC(uint32_t) + +#define INDEL_WINDOW_SIZE 50 +#define INDEL_EXT_DEP 0.9 + +typedef struct __bmc_aux_t { + int max; + uint32_t *info; + uint16_t *info16; + errmod_t *em; +} bmc_aux_t; + +typedef struct { + float esum[4], fsum[4]; + uint32_t c[4]; +} glf_call_aux_t; + +/* + P() = \theta \sum_{i=1}^{N-1} 1/i + P(D|) = \sum_{k=1}^{N-1} p_k 1/2 [(k/N)^n_2(1-k/N)^n_1 + (k/N)^n1(1-k/N)^n_2] + p_k = 1/k / \sum_{i=1}^{N-1} 1/i + */ +static void cal_het(bam_maqcns_t *aa) +{ + int k, n1, n2; + double sum_harmo; // harmonic sum + double poly_rate; + + free(aa->lhet); + aa->lhet = (double*)calloc(256 * 256, sizeof(double)); + sum_harmo = 0.0; + for (k = 1; k <= aa->n_hap - 1; ++k) + sum_harmo += 1.0 / k; + for (n1 = 0; n1 < 256; ++n1) { + for (n2 = 0; n2 < 256; ++n2) { + long double sum = 0.0; + double lC = aa->errmod == BAM_ERRMOD_SOAP? 0 : lgamma(n1+n2+1) - lgamma(n1+1) - lgamma(n2+1); + for (k = 1; k <= aa->n_hap - 1; ++k) { + double pk = 1.0 / k / sum_harmo; + double log1 = log((double)k/aa->n_hap); + double log2 = log(1.0 - (double)k/aa->n_hap); + sum += pk * 0.5 * (expl(log1*n2) * expl(log2*n1) + expl(log1*n1) * expl(log2*n2)); + } + aa->lhet[n1<<8|n2] = lC + logl(sum); + } + } + poly_rate = aa->het_rate * sum_harmo; + aa->q_r = -4.343 * log(2.0 * poly_rate / (1.0 - poly_rate)); +} + +/** initialize the helper structure */ +static void cal_coef(bam_maqcns_t *aa) +{ + int k, n, q; + long double sum_a[257], b[256], q_c[256], tmp[256], fk2[256]; + double *lC; + + if (aa->errmod == BAM_ERRMOD_MAQ2) return; // no need to do the following + // aa->lhet will be allocated and initialized + free(aa->fk); free(aa->coef); + aa->coef = 0; + aa->fk = (double*)calloc(256, sizeof(double)); + aa->fk[0] = fk2[0] = 1.0; + for (n = 1; n != 256; ++n) { + aa->fk[n] = pow(aa->theta, n) * (1.0 - aa->eta) + aa->eta; + fk2[n] = aa->fk[n>>1]; // this is an approximation, assuming reads equally likely come from both strands + } + if (aa->errmod == BAM_ERRMOD_SOAP) return; + aa->coef = (double*)calloc(256*256*64, sizeof(double)); + lC = (double*)calloc(256 * 256, sizeof(double)); + for (n = 1; n != 256; ++n) + for (k = 1; k <= n; ++k) + lC[n<<8|k] = lgamma(n+1) - lgamma(k+1) - lgamma(n-k+1); + for (q = 1; q != 64; ++q) { + double e = pow(10.0, -q/10.0); + double le = log(e); + double le1 = log(1.0-e); + for (n = 1; n != 256; ++n) { + double *coef = aa->coef + (q<<16|n<<8); + sum_a[n+1] = 0.0; + for (k = n; k >= 0; --k) { // a_k = \sum_{i=k}^n C^n_k \epsilon^k (1-\epsilon)^{n-k} + sum_a[k] = sum_a[k+1] + expl(lC[n<<8|k] + k*le + (n-k)*le1); + b[k] = sum_a[k+1] / sum_a[k]; + if (b[k] > 0.99) b[k] = 0.99; + } + for (k = 0; k != n; ++k) // log(\bar\beta_{nk}(\bar\epsilon)^{f_k}) + q_c[k] = -4.343 * fk2[k] * logl(b[k] / e); + for (k = 1; k != n; ++k) q_c[k] += q_c[k-1]; // \prod_{i=0}^k c_i + for (k = 0; k <= n; ++k) { // powl() in 64-bit mode seems broken on my Mac OS X 10.4.9 + tmp[k] = -4.343 * logl(1.0 - expl(fk2[k] * logl(b[k]))); + coef[k] = (k? q_c[k-1] : 0) + tmp[k]; // this is the final c_{nk} + } + } + } + free(lC); +} + +bam_maqcns_t *bam_maqcns_init() +{ + bam_maqcns_t *bm; + bm = (bam_maqcns_t*)calloc(1, sizeof(bam_maqcns_t)); + bm->aux = (bmc_aux_t*)calloc(1, sizeof(bmc_aux_t)); + bm->het_rate = 0.001; + bm->theta = 0.83f; + bm->n_hap = 2; + bm->eta = 0.03; + bm->cap_mapQ = 60; + bm->min_baseQ = 13; + return bm; +} + +void bam_maqcns_prepare(bam_maqcns_t *bm) +{ + if (bm->errmod == BAM_ERRMOD_MAQ2) bm->aux->em = errmod_init(1. - bm->theta); + cal_coef(bm); cal_het(bm); +} + +void bam_maqcns_destroy(bam_maqcns_t *bm) +{ + if (bm == 0) return; + free(bm->lhet); free(bm->fk); free(bm->coef); free(bm->aux->info); free(bm->aux->info16); + if (bm->aux->em) errmod_destroy(bm->aux->em); + free(bm->aux); free(bm); +} + +glf1_t *bam_maqcns_glfgen(int _n, const bam_pileup1_t *pl, uint8_t ref_base, bam_maqcns_t *bm) +{ + glf_call_aux_t *b = 0; + int i, j, k, w[8], c, n; + glf1_t *g = (glf1_t*)calloc(1, sizeof(glf1_t)); + float p[16], min_p = 1e30; + uint64_t rms; + + g->ref_base = ref_base; + if (_n == 0) return g; + + // construct aux array + if (bm->aux->max < _n) { + bm->aux->max = _n; + kroundup32(bm->aux->max); + bm->aux->info = (uint32_t*)realloc(bm->aux->info, 4 * bm->aux->max); + bm->aux->info16 = (uint16_t*)realloc(bm->aux->info16, 2 * bm->aux->max); + } + for (i = n = 0, rms = 0; i < _n; ++i) { + const bam_pileup1_t *p = pl + i; + uint32_t q, x = 0, qq; + uint16_t y = 0; + if (p->is_del || p->is_refskip || (p->b->core.flag&BAM_FUNMAP)) continue; + q = (uint32_t)bam1_qual(p->b)[p->qpos]; + if (q < bm->min_baseQ) continue; + x |= (uint32_t)bam1_strand(p->b) << 18 | q << 8 | p->b->core.qual; + y |= bam1_strand(p->b)<<4; + if (p->b->core.qual < q) q = p->b->core.qual; + c = p->b->core.qual < bm->cap_mapQ? p->b->core.qual : bm->cap_mapQ; + rms += c * c; + x |= q << 24; + y |= q << 5; + qq = bam1_seqi(bam1_seq(p->b), p->qpos); + q = bam_nt16_nt4_table[qq? qq : ref_base]; + if (!p->is_del && !p->is_refskip && q < 4) x |= 1 << 21 | q << 16, y |= q; + bm->aux->info16[n] = y; + bm->aux->info[n++] = x; + } + rms = (uint8_t)(sqrt((double)rms / n) + .499); + if (bm->errmod == BAM_ERRMOD_MAQ2) { + errmod_cal(bm->aux->em, n, 4, bm->aux->info16, p); + goto goto_glf; + } + ks_introsort(uint32_t, n, bm->aux->info); + // generate esum and fsum + b = (glf_call_aux_t*)calloc(1, sizeof(glf_call_aux_t)); + for (k = 0; k != 8; ++k) w[k] = 0; + for (j = n - 1; j >= 0; --j) { // calculate esum and fsum + uint32_t info = bm->aux->info[j]; + if (info>>24 < 4 && (info>>8&0x3f) != 0) info = 4<<24 | (info&0xffffff); + k = info>>16&7; + if (info>>24 > 0) { + b->esum[k&3] += bm->fk[w[k]] * (info>>24); + b->fsum[k&3] += bm->fk[w[k]]; + if (w[k] < 0xff) ++w[k]; + ++b->c[k&3]; + } + } + // rescale ->c[] + for (j = c = 0; j != 4; ++j) c += b->c[j]; + if (c > 255) { + for (j = 0; j != 4; ++j) b->c[j] = (int)(254.0 * b->c[j] / c + 0.5); + for (j = c = 0; j != 4; ++j) c += b->c[j]; + } + if (bm->errmod == BAM_ERRMOD_MAQ) { + // generate likelihood + for (j = 0; j != 4; ++j) { + // homozygous + float tmp1, tmp3; + int tmp2, bar_e; + for (k = 0, tmp1 = tmp3 = 0.0, tmp2 = 0; k != 4; ++k) { + if (j == k) continue; + tmp1 += b->esum[k]; tmp2 += b->c[k]; tmp3 += b->fsum[k]; + } + if (tmp2) { + bar_e = (int)(tmp1 / tmp3 + 0.5); + if (bar_e < 4) bar_e = 4; // should not happen + if (bar_e > 63) bar_e = 63; + p[j<<2|j] = tmp1 + bm->coef[bar_e<<16|c<<8|tmp2]; + } else p[j<<2|j] = 0.0; // all the bases are j + // heterozygous + for (k = j + 1; k < 4; ++k) { + for (i = 0, tmp2 = 0, tmp1 = tmp3 = 0.0; i != 4; ++i) { + if (i == j || i == k) continue; + tmp1 += b->esum[i]; tmp2 += b->c[i]; tmp3 += b->fsum[i]; + } + if (tmp2) { + bar_e = (int)(tmp1 / tmp3 + 0.5); + if (bar_e < 4) bar_e = 4; + if (bar_e > 63) bar_e = 63; + p[j<<2|k] = p[k<<2|j] = -4.343 * bm->lhet[b->c[j]<<8|b->c[k]] + tmp1 + bm->coef[bar_e<<16|c<<8|tmp2]; + } else p[j<<2|k] = p[k<<2|j] = -4.343 * bm->lhet[b->c[j]<<8|b->c[k]]; // all the bases are either j or k + } + // + for (k = 0; k != 4; ++k) + if (p[j<<2|k] < 0.0) p[j<<2|k] = 0.0; + } + + { // fix p[k<<2|k] + float max1, max2, min1, min2; + int max_k, min_k; + max_k = min_k = -1; + max1 = max2 = -1.0; min1 = min2 = 1e30; + for (k = 0; k < 4; ++k) { + if (b->esum[k] > max1) { + max2 = max1; max1 = b->esum[k]; max_k = k; + } else if (b->esum[k] > max2) max2 = b->esum[k]; + } + for (k = 0; k < 4; ++k) { + if (p[k<<2|k] < min1) { + min2 = min1; min1 = p[k<<2|k]; min_k = k; + } else if (p[k<<2|k] < min2) min2 = p[k<<2|k]; + } + if (max1 > max2 && (min_k != max_k || min1 + 1.0 > min2)) + p[max_k<<2|max_k] = min1 > 1.0? min1 - 1.0 : 0.0; + } + } else if (bm->errmod == BAM_ERRMOD_SOAP) { // apply the SOAP model + // generate likelihood + for (j = 0; j != 4; ++j) { + float tmp; + // homozygous + for (k = 0, tmp = 0.0; k != 4; ++k) + if (j != k) tmp += b->esum[k]; + p[j<<2|j] = tmp; + // heterozygous + for (k = j + 1; k < 4; ++k) { + for (i = 0, tmp = 0.0; i != 4; ++i) + if (i != j && i != k) tmp += b->esum[i]; + p[j<<2|k] = p[k<<2|j] = -4.343 * bm->lhet[b->c[j]<<8|b->c[k]] + tmp; + } + } + } + +goto_glf: + // convert necessary information to glf1_t + g->ref_base = ref_base; g->max_mapQ = rms; + g->depth = n > 16777215? 16777215 : n; + for (j = 0; j != 4; ++j) + for (k = j; k < 4; ++k) + if (p[j<<2|k] < min_p) min_p = p[j<<2|k]; + g->min_lk = min_p > 255.0? 255 : (int)(min_p + 0.5); + for (j = c = 0; j != 4; ++j) + for (k = j; k < 4; ++k) + g->lk[c++] = p[j<<2|k]-min_p > 255.0? 255 : (int)(p[j<<2|k]-min_p + 0.5); + + free(b); + return g; +} + +uint32_t glf2cns(const glf1_t *g, int q_r) +{ + int i, j, k, p[10], ref4; + uint32_t x = 0; + ref4 = bam_nt16_nt4_table[g->ref_base]; + for (i = k = 0; i < 4; ++i) + for (j = i; j < 4; ++j) { + int prior = (i == ref4 && j == ref4? 0 : i == ref4 || j == ref4? q_r : q_r + 3); + p[k] = (g->lk[k] + prior)<<4 | i<<2 | j; + ++k; + } + for (i = 1; i < 10; ++i) // insertion sort + for (j = i; j > 0 && p[j] < p[j-1]; --j) + k = p[j], p[j] = p[j-1], p[j-1] = k; + x = (1u<<(p[0]&3) | 1u<<(p[0]>>2&3)) << 28; // the best genotype + x |= (uint32_t)g->max_mapQ << 16; // rms mapQ + x |= ((p[1]>>4) - (p[0]>>4) < 256? (p[1]>>4) - (p[0]>>4) : 255) << 8; // consensus Q + for (k = 0; k < 10; ++k) + if ((p[k]&0xf) == (ref4<<2|ref4)) break; + if (k == 10) k = 9; + x |= (p[k]>>4) - (p[0]>>4) < 256? (p[k]>>4) - (p[0]>>4) : 255; // snp Q + return x; +} + +uint32_t bam_maqcns_call(int n, const bam_pileup1_t *pl, bam_maqcns_t *bm) +{ + glf1_t *g; + uint32_t x; + if (n) { + g = bam_maqcns_glfgen(n, pl, 0xf, bm); + x = g->depth == 0? (0xfU<<28 | 0xfU<<24) : glf2cns(g, (int)(bm->q_r + 0.5)); + free(g); + } else x = 0xfU<<28 | 0xfU<<24; + return x; +} + +/************** *****************/ + +bam_maqindel_opt_t *bam_maqindel_opt_init() +{ + bam_maqindel_opt_t *mi = (bam_maqindel_opt_t*)calloc(1, sizeof(bam_maqindel_opt_t)); + mi->q_indel = 40; + mi->r_indel = 0.00015; + mi->r_snp = 0.001; + // + mi->mm_penalty = 3; + mi->indel_err = 4; + mi->ambi_thres = 10; + return mi; +} + +void bam_maqindel_ret_destroy(bam_maqindel_ret_t *mir) +{ + if (mir == 0) return; + free(mir->s[0]); free(mir->s[1]); free(mir); +} + +int bam_tpos2qpos(const bam1_core_t *c, const uint32_t *cigar, int32_t tpos, int is_left, int32_t *_tpos) +{ + int k, x = c->pos, y = 0, last_y = 0; + *_tpos = c->pos; + for (k = 0; k < c->n_cigar; ++k) { + int op = cigar[k] & BAM_CIGAR_MASK; + int l = cigar[k] >> BAM_CIGAR_SHIFT; + if (op == BAM_CMATCH) { + if (c->pos > tpos) return y; + if (x + l > tpos) { + *_tpos = tpos; + return y + (tpos - x); + } + x += l; y += l; + last_y = y; + } else if (op == BAM_CINS || op == BAM_CSOFT_CLIP) y += l; + else if (op == BAM_CDEL || op == BAM_CREF_SKIP) { + if (x + l > tpos) { + *_tpos = is_left? x : x + l; + return y; + } + x += l; + } + } + *_tpos = x; + return last_y; +} + +#define MINUS_CONST 0x10000000 + +bam_maqindel_ret_t *bam_maqindel(int n, int pos, const bam_maqindel_opt_t *mi, const bam_pileup1_t *pl, const char *ref, + int _n_types, int *_types) +{ + int i, j, n_types, *types, left, right, max_rd_len = 0; + bam_maqindel_ret_t *ret = 0; + // if there is no proposed indel, check if there is an indel from the alignment + if (_n_types == 0) { + for (i = 0; i < n; ++i) { + const bam_pileup1_t *p = pl + i; + if (!(p->b->core.flag&BAM_FUNMAP) && p->indel != 0) break; + } + if (i == n) return 0; // no indel + } + { // calculate how many types of indels are available (set n_types and types) + int m; + uint32_t *aux; + aux = (uint32_t*)calloc(n + _n_types + 1, 4); + m = 0; + aux[m++] = MINUS_CONST; // zero indel is always a type + for (i = 0; i < n; ++i) { + const bam_pileup1_t *p = pl + i; + if (!(p->b->core.flag&BAM_FUNMAP) && p->indel != 0) + aux[m++] = MINUS_CONST + p->indel; + j = bam_cigar2qlen(&p->b->core, bam1_cigar(p->b)); + if (j > max_rd_len) max_rd_len = j; + } + if (_n_types) // then also add this to aux[] + for (i = 0; i < _n_types; ++i) + if (_types[i]) aux[m++] = MINUS_CONST + _types[i]; + ks_introsort(uint32_t, m, aux); + // squeeze out identical types + for (i = 1, n_types = 1; i < m; ++i) + if (aux[i] != aux[i-1]) ++n_types; + types = (int*)calloc(n_types, sizeof(int)); + j = 0; + types[j++] = aux[0] - MINUS_CONST; + for (i = 1; i < m; ++i) { + if (aux[i] != aux[i-1]) + types[j++] = aux[i] - MINUS_CONST; + } + free(aux); + } + { // calculate left and right boundary + left = pos > INDEL_WINDOW_SIZE? pos - INDEL_WINDOW_SIZE : 0; + right = pos + INDEL_WINDOW_SIZE; + if (types[0] < 0) right -= types[0]; + // in case the alignments stand out the reference + for (i = pos; i < right; ++i) + if (ref[i] == 0) break; + right = i; + } + { // the core part + char *ref2, *rs, *inscns = 0; + int qr_snp, k, l, *score, *pscore, max_ins = types[n_types-1]; + qr_snp = (int)(-4.343 * log(mi->r_snp) + .499); + if (max_ins > 0) { // get the consensus of inserted sequences + int *inscns_aux = (int*)calloc(4 * n_types * max_ins, sizeof(int)); + // count occurrences + for (i = 0; i < n_types; ++i) { + if (types[i] <= 0) continue; // not insertion + for (j = 0; j < n; ++j) { + const bam_pileup1_t *p = pl + j; + if (!(p->b->core.flag&BAM_FUNMAP) && p->indel == types[i]) { + for (k = 1; k <= p->indel; ++k) { + int c = bam_nt16_nt4_table[bam1_seqi(bam1_seq(p->b), p->qpos + k)]; + if (c < 4) ++inscns_aux[i*max_ins*4 + (k-1)*4 + c]; + } + } + } + } + // construct the consensus of inserted sequence + inscns = (char*)calloc(n_types * max_ins, sizeof(char)); + for (i = 0; i < n_types; ++i) { + for (j = 0; j < types[i]; ++j) { + int max = 0, max_k = -1, *ia = inscns_aux + i*max_ins*4 + j*4; + for (k = 0; k < 4; ++k) { + if (ia[k] > max) { + max = ia[k]; + max_k = k; + } + } + inscns[i*max_ins + j] = max? 1<= 0? -types[0] : -types[0] + types[i]; + for (jj = 0; jj < tmp && j < right && ref[j]; ++jj, ++j) + ref2[k++] = 4; + } + for (; j < right && ref[j]; ++j) + ref2[k++] = bam_nt16_nt4_table[bam_nt16_table[(int)ref[j]]]; + if (j < right) right = j; + // calculate score for each read + for (j = 0; j < n; ++j) { + const bam_pileup1_t *p = pl + j; + int qbeg, qend, tbeg, tend; + if (p->b->core.flag & BAM_FUNMAP) continue; + qbeg = bam_tpos2qpos(&p->b->core, bam1_cigar(p->b), left, 0, &tbeg); + qend = bam_tpos2qpos(&p->b->core, bam1_cigar(p->b), right, 1, &tend); + assert(tbeg >= left); + for (l = qbeg; l < qend; ++l) + rs[l - qbeg] = bam_nt16_nt4_table[bam1_seqi(bam1_seq(p->b), l)]; + { + int x, y, n_acigar, ps; + uint32_t *acigar; + ps = 0; + if (tend - tbeg + types[i] <= 0) { + score[i*n+j] = -(1<<20); + pscore[i*n+j] = 1<<20; + continue; + } + acigar = ka_global_core((uint8_t*)ref2 + tbeg - left, tend - tbeg + types[i], (uint8_t*)rs, qend - qbeg, &ap, &score[i*n+j], &n_acigar); + x = tbeg - left; y = 0; + for (l = 0; l < n_acigar; ++l) { + int op = acigar[l]&0xf; + int len = acigar[l]>>4; + if (op == BAM_CMATCH) { + int k; + for (k = 0; k < len; ++k) + if (ref2[x+k] != rs[y+k] && ref2[x+k] < 4) + ps += bam1_qual(p->b)[y+k] < qr_snp? bam1_qual(p->b)[y+k] : qr_snp; + x += len; y += len; + } else if (op == BAM_CINS || op == BAM_CSOFT_CLIP) { + if (op == BAM_CINS && l > 0 && l < n_acigar - 1) ps += mi->q_indel * len; + y += len; + } else if (op == BAM_CDEL) { + if (l > 0 && l < n_acigar - 1) ps += mi->q_indel * len; + x += len; + } + } + pscore[i*n+j] = ps; + /*if (1) { // for debugging only + fprintf(pysamerr, "id=%d, pos=%d, type=%d, j=%d, score=%d, psore=%d, %d, %d, %d, %d, %d, ", + j, pos+1, types[i], j, score[i*n+j], pscore[i*n+j], tbeg, tend, qbeg, qend, mi->q_indel); + for (l = 0; l < n_acigar; ++l) fprintf(pysamerr, "%d%c", acigar[l]>>4, "MIDS"[acigar[l]&0xf]); + fprintf(pysamerr, "\n"); + for (l = 0; l < tend - tbeg + types[i]; ++l) fputc("ACGTN"[ref2[l+tbeg-left]], pysamerr); + fputc('\n', pysamerr); + for (l = 0; l < qend - qbeg; ++l) fputc("ACGTN"[rs[l]], pysamerr); + fputc('\n', pysamerr); + }*/ + free(acigar); + } + } + } + { // get final result + int *sum, max1, max2, max1_i, max2_i; + // pick up the best two score + sum = (int*)calloc(n_types, sizeof(int)); + for (i = 0; i < n_types; ++i) + for (j = 0; j < n; ++j) + sum[i] += -pscore[i*n+j]; + max1 = max2 = -0x7fffffff; max1_i = max2_i = -1; + for (i = 0; i < n_types; ++i) { + if (sum[i] > max1) { + max2 = max1; max2_i = max1_i; max1 = sum[i]; max1_i = i; + } else if (sum[i] > max2) { + max2 = sum[i]; max2_i = i; + } + } + free(sum); + // write ret + ret = (bam_maqindel_ret_t*)calloc(1, sizeof(bam_maqindel_ret_t)); + ret->indel1 = types[max1_i]; ret->indel2 = types[max2_i]; + ret->s[0] = (char*)calloc(abs(ret->indel1) + 2, 1); + ret->s[1] = (char*)calloc(abs(ret->indel2) + 2, 1); + // write indel sequence + if (ret->indel1 > 0) { + ret->s[0][0] = '+'; + for (k = 0; k < ret->indel1; ++k) + ret->s[0][k+1] = bam_nt16_rev_table[(int)inscns[max1_i*max_ins + k]]; + } else if (ret->indel1 < 0) { + ret->s[0][0] = '-'; + for (k = 0; k < -ret->indel1 && ref[pos + k + 1]; ++k) + ret->s[0][k+1] = ref[pos + k + 1]; + } else ret->s[0][0] = '*'; + if (ret->indel2 > 0) { + ret->s[1][0] = '+'; + for (k = 0; k < ret->indel2; ++k) + ret->s[1][k+1] = bam_nt16_rev_table[(int)inscns[max2_i*max_ins + k]]; + } else if (ret->indel2 < 0) { + ret->s[1][0] = '-'; + for (k = 0; k < -ret->indel2 && ref[pos + k + 1]; ++k) + ret->s[1][k+1] = ref[pos + k + 1]; + } else ret->s[1][0] = '*'; + // write count + for (i = 0; i < n; ++i) { + const bam_pileup1_t *p = pl + i; + if (p->indel == ret->indel1) ++ret->cnt1; + else if (p->indel == ret->indel2) ++ret->cnt2; + else ++ret->cnt_anti; + } + { // write gl[] + int tmp, seq_err = 0; + double x = 1.0; + tmp = max1_i - max2_i; + if (tmp < 0) tmp = -tmp; + for (j = 0; j < tmp + 1; ++j) x *= INDEL_EXT_DEP; + seq_err = mi->q_indel * (1.0 - x) / (1.0 - INDEL_EXT_DEP); + ret->gl[0] = ret->gl[1] = 0; + for (j = 0; j < n; ++j) { + int s1 = pscore[max1_i*n + j], s2 = pscore[max2_i*n + j]; + //fprintf(pysamerr, "id=%d, %d, %d, %d, %d, %d\n", j, pl[j].b->core.pos+1, types[max1_i], types[max2_i], s1, s2); + if (s1 > s2) ret->gl[0] += s1 - s2 < seq_err? s1 - s2 : seq_err; + else ret->gl[1] += s2 - s1 < seq_err? s2 - s1 : seq_err; + } + } + // write cnt_ref and cnt_ambi + if (max1_i != 0 && max2_i != 0) { + for (j = 0; j < n; ++j) { + int diff1 = score[j] - score[max1_i * n + j]; + int diff2 = score[j] - score[max2_i * n + j]; + if (diff1 > 0 && diff2 > 0) ++ret->cnt_ref; + else if (diff1 == 0 || diff2 == 0) ++ret->cnt_ambi; + } + } + } + free(score); free(pscore); free(ref2); free(rs); free(inscns); + } + { // call genotype + int q[3], qr_indel = (int)(-4.343 * log(mi->r_indel) + 0.5); + int min1, min2, min1_i; + q[0] = ret->gl[0] + (ret->s[0][0] != '*'? 0 : 0) * qr_indel; + q[1] = ret->gl[1] + (ret->s[1][0] != '*'? 0 : 0) * qr_indel; + q[2] = n * 3 + (ret->s[0][0] == '*' || ret->s[1][0] == '*'? 1 : 1) * qr_indel; + min1 = min2 = 0x7fffffff; min1_i = -1; + for (i = 0; i < 3; ++i) { + if (q[i] < min1) { + min2 = min1; min1 = q[i]; min1_i = i; + } else if (q[i] < min2) min2 = q[i]; + } + ret->gt = min1_i; + ret->q_cns = min2 - min1; + // set q_ref + if (ret->gt < 2) ret->q_ref = (ret->s[ret->gt][0] == '*')? 0 : q[1-ret->gt] - q[ret->gt] - qr_indel - 3; + else ret->q_ref = (ret->s[0][0] == '*')? q[0] - q[2] : q[1] - q[2]; + if (ret->q_ref < 0) ret->q_ref = 0; + } + free(types); + return ret; +}