X-Git-Url: http://woldlab.caltech.edu/gitweb/?p=pysam.git;a=blobdiff_plain;f=samtools%2Fphase.c.pysam.c;fp=samtools%2Fphase.c.pysam.c;h=d14253813537c23daeb55fef462901158f97c90b;hp=0000000000000000000000000000000000000000;hb=d02fe5283ed7a93a2f76a5d6dc6e37b40c11b9b1;hpb=d828f9c9aa78e3d1687265b52de841f3f3852089 diff --git a/samtools/phase.c.pysam.c b/samtools/phase.c.pysam.c new file mode 100644 index 0000000..d142538 --- /dev/null +++ b/samtools/phase.c.pysam.c @@ -0,0 +1,689 @@ +#include "pysam.h" + +#include +#include +#include +#include +#include +#include +#include "bam.h" +#include "errmod.h" + +#include "kseq.h" +KSTREAM_INIT(gzFile, gzread, 16384) + +#define MAX_VARS 256 +#define FLIP_PENALTY 2 +#define FLIP_THRES 4 +#define MASK_THRES 3 + +#define FLAG_FIX_CHIMERA 0x1 +#define FLAG_LIST_EXCL 0x4 +#define FLAG_DROP_AMBI 0x8 + +typedef struct { + // configurations, initialized in the main function + int flag, k, min_baseQ, min_varLOD, max_depth; + // other global variables + int vpos_shift; + bamFile fp; + char *pre; + bamFile out[3]; + // alignment queue + int n, m; + bam1_t **b; +} phaseg_t; + +typedef struct { + int8_t seq[MAX_VARS]; // TODO: change to dynamic memory allocation! + int vpos, beg, end; + uint32_t vlen:16, single:1, flip:1, phase:1, phased:1, ambig:1; + uint32_t in:16, out:16; // in-phase and out-phase +} frag_t, *frag_p; + +#define rseq_lt(a,b) ((a)->vpos < (b)->vpos) + +#include "khash.h" +KHASH_SET_INIT_INT64(set64) +KHASH_MAP_INIT_INT64(64, frag_t) + +typedef khash_t(64) nseq_t; + +#include "ksort.h" +KSORT_INIT(rseq, frag_p, rseq_lt) + +static char nt16_nt4_table[] = { 4, 0, 1, 4, 2, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4 }; + +static inline uint64_t X31_hash_string(const char *s) +{ + uint64_t h = *s; + if (h) for (++s ; *s; ++s) h = (h << 5) - h + *s; + return h; +} + +static void count1(int l, const uint8_t *seq, int *cnt) +{ + int i, j, n_ambi; + uint32_t z, x; + if (seq[l-1] == 0) return; // do nothing is the last base is ambiguous + for (i = n_ambi = 0; i < l; ++i) // collect ambiguous bases + if (seq[i] == 0) ++n_ambi; + if (l - n_ambi <= 1) return; // only one SNP + for (x = 0; x < 1u<>j&1; + ++j; + } + z = z<<1 | c; + } + ++cnt[z]; + } +} + +static int **count_all(int l, int vpos, nseq_t *hash) +{ + khint_t k; + int i, j, **cnt; + uint8_t *seq; + seq = calloc(l, 1); + cnt = calloc(vpos, sizeof(void*)); + for (i = 0; i < vpos; ++i) cnt[i] = calloc(1<vpos >= vpos || f->single) continue; // out of region; or singleton + if (f->vlen == 1) { // such reads should be flagged as deleted previously if everything is right + f->single = 1; + continue; + } + for (j = 1; j < f->vlen; ++j) { + for (i = 0; i < l; ++i) + seq[i] = j < l - 1 - i? 0 : f->seq[j - (l - 1 - i)]; + count1(l, seq, cnt[f->vpos + j]); + } + } + } + free(seq); + return cnt; +} + +// phasing +static int8_t *dynaprog(int l, int vpos, int **w) +{ + int *f[2], *curr, *prev, max, i; + int8_t **b, *h = 0; + uint32_t x, z = 1u<<(l-1), mask = (1u<>1; y1 = xc>>1; + c0 = prev[y0] + wi[x] + wi[xc]; + c1 = prev[y1] + wi[x] + wi[xc]; + if (c0 > c1) bi[x] = 0, curr[x] = c0; + else bi[x] = 1, curr[x] = c1; + } + tmp = prev; prev = curr; curr = tmp; // swap + } + { // backtrack + uint32_t max_x = 0; + int which = 0; + h = calloc(vpos, 1); + for (x = 0, max = 0, max_x = 0; x < z; ++x) + if (prev[x] > max) max = prev[x], max_x = x; + for (i = vpos - 1, x = max_x; i >= 0; --i) { + h[i] = which? (~x&1) : (x&1); + which = b[i][x]? !which : which; + x = b[i][x]? (~x&mask)>>1 : x>>1; + } + } + // free + for (i = 0; i < vpos; ++i) free(b[i]); + free(f[0]); free(f[1]); free(b); + return h; +} + +// phase each fragment +static uint64_t *fragphase(int vpos, const int8_t *path, nseq_t *hash, int flip) +{ + khint_t k; + uint64_t *pcnt; + uint32_t *left, *rght, max; + left = rght = 0; max = 0; + pcnt = calloc(vpos, 8); + for (k = 0; k < kh_end(hash); ++k) { + if (kh_exist(hash, k)) { + int i, c[2]; + frag_t *f = &kh_val(hash, k); + if (f->vpos >= vpos) continue; + // get the phase + c[0] = c[1] = 0; + for (i = 0; i < f->vlen; ++i) { + if (f->seq[i] == 0) continue; + ++c[f->seq[i] == path[f->vpos + i] + 1? 0 : 1]; + } + f->phase = c[0] > c[1]? 0 : 1; + f->in = c[f->phase]; f->out = c[1 - f->phase]; + f->phased = f->in == f->out? 0 : 1; + f->ambig = (f->in && f->out && f->out < 3 && f->in <= f->out + 1)? 1 : 0; + // fix chimera + f->flip = 0; + if (flip && c[0] >= 3 && c[1] >= 3) { + int sum[2], m, mi, md; + if (f->vlen > max) { // enlarge the array + max = f->vlen; + kroundup32(max); + left = realloc(left, max * 4); + rght = realloc(rght, max * 4); + } + for (i = 0, sum[0] = sum[1] = 0; i < f->vlen; ++i) { // get left counts + if (f->seq[i]) { + int c = f->phase? 2 - f->seq[i] : f->seq[i] - 1; + ++sum[c == path[f->vpos + i]? 0 : 1]; + } + left[i] = sum[1]<<16 | sum[0]; + } + for (i = f->vlen - 1, sum[0] = sum[1] = 0; i >= 0; --i) { // get right counts + if (f->seq[i]) { + int c = f->phase? 2 - f->seq[i] : f->seq[i] - 1; + ++sum[c == path[f->vpos + i]? 0 : 1]; + } + rght[i] = sum[1]<<16 | sum[0]; + } + // find the best flip point + for (i = m = 0, mi = -1, md = -1; i < f->vlen - 1; ++i) { + int a[2]; + a[0] = (left[i]&0xffff) + (rght[i+1]>>16&0xffff) - (rght[i+1]&0xffff) * FLIP_PENALTY; + a[1] = (left[i]>>16&0xffff) + (rght[i+1]&0xffff) - (rght[i+1]>>16&0xffff) * FLIP_PENALTY; + if (a[0] > a[1]) { + if (a[0] > m) m = a[0], md = 0, mi = i; + } else { + if (a[1] > m) m = a[1], md = 1, mi = i; + } + } + if (m - c[0] >= FLIP_THRES && m - c[1] >= FLIP_THRES) { // then flip + f->flip = 1; + if (md == 0) { // flip the tail + for (i = mi + 1; i < f->vlen; ++i) + if (f->seq[i] == 1) f->seq[i] = 2; + else if (f->seq[i] == 2) f->seq[i] = 1; + } else { // flip the head + for (i = 0; i <= mi; ++i) + if (f->seq[i] == 1) f->seq[i] = 2; + else if (f->seq[i] == 2) f->seq[i] = 1; + } + } + } + // update pcnt[] + if (!f->single) { + for (i = 0; i < f->vlen; ++i) { + int c; + if (f->seq[i] == 0) continue; + c = f->phase? 2 - f->seq[i] : f->seq[i] - 1; + if (c == path[f->vpos + i]) { + if (f->phase == 0) ++pcnt[f->vpos + i]; + else pcnt[f->vpos + i] += 1ull<<32; + } else { + if (f->phase == 0) pcnt[f->vpos + i] += 1<<16; + else pcnt[f->vpos + i] += 1ull<<48; + } + } + } + } + } + free(left); free(rght); + return pcnt; +} + +static uint64_t *genmask(int vpos, const uint64_t *pcnt, int *_n) +{ + int i, max = 0, max_i = -1, m = 0, n = 0, beg = 0, score = 0; + uint64_t *list = 0; + for (i = 0; i < vpos; ++i) { + uint64_t x = pcnt[i]; + int c[4], pre = score, s; + c[0] = x&0xffff; c[1] = x>>16&0xffff; c[2] = x>>32&0xffff; c[3] = x>>48&0xffff; + s = (c[1] + c[3] == 0)? -(c[0] + c[2]) : (c[1] + c[3] - 1); + if (c[3] > c[2]) s += c[3] - c[2]; + if (c[1] > c[0]) s += c[1] - c[0]; + score += s; + if (score < 0) score = 0; + if (pre == 0 && score > 0) beg = i; // change from zero to non-zero + if ((i == vpos - 1 || score == 0) && max >= MASK_THRES) { + if (n == m) { + m = m? m<<1 : 4; + list = realloc(list, m * 8); + } + list[n++] = (uint64_t)beg<<32 | max_i; + i = max_i; // reset i to max_i + score = 0; + } else if (score > max) max = score, max_i = i; + if (score == 0) max = 0; + } + *_n = n; + return list; +} + +// trim heading and tailing ambiguous bases; mark deleted and remove sequence +static int clean_seqs(int vpos, nseq_t *hash) +{ + khint_t k; + int ret = 0; + for (k = 0; k < kh_end(hash); ++k) { + if (kh_exist(hash, k)) { + frag_t *f = &kh_val(hash, k); + int beg, end, i; + if (f->vpos >= vpos) { + ret = 1; + continue; + } + for (i = 0; i < f->vlen; ++i) + if (f->seq[i] != 0) break; + beg = i; + for (i = f->vlen - 1; i >= 0; --i) + if (f->seq[i] != 0) break; + end = i + 1; + if (end - beg <= 0) kh_del(64, hash, k); + else { + if (beg != 0) memmove(f->seq, f->seq + beg, end - beg); + f->vpos += beg; f->vlen = end - beg; + f->single = f->vlen == 1? 1 : 0; + } + } + } + return ret; +} + +static void dump_aln(phaseg_t *g, int min_pos, const nseq_t *hash) +{ + int i, is_flip, drop_ambi; + drop_ambi = g->flag & FLAG_DROP_AMBI; + is_flip = (drand48() < 0.5); + for (i = 0; i < g->n; ++i) { + int end, which; + uint64_t key; + khint_t k; + bam1_t *b = g->b[i]; + key = X31_hash_string(bam1_qname(b)); + end = bam_calend(&b->core, bam1_cigar(b)); + if (end > min_pos) break; + k = kh_get(64, hash, key); + if (k == kh_end(hash)) which = 3; + else { + frag_t *f = &kh_val(hash, k); + if (f->ambig) which = drop_ambi? 2 : 3; + else if (f->phased && f->flip) which = 2; + else if (f->phased == 0) which = 3; + else { // phased and not flipped + char c = 'Y'; + which = f->phase; + bam_aux_append(b, "ZP", 'A', 1, (uint8_t*)&c); + } + if (which < 2 && is_flip) which = 1 - which; // increase the randomness + } + if (which == 3) which = (drand48() < 0.5); + bam_write1(g->out[which], b); + bam_destroy1(b); + g->b[i] = 0; + } + memmove(g->b, g->b + i, (g->n - i) * sizeof(void*)); + g->n -= i; +} + +static int phase(phaseg_t *g, const char *chr, int vpos, uint64_t *cns, nseq_t *hash) +{ + int i, j, n_seqs = kh_size(hash), n_masked = 0, min_pos; + khint_t k; + frag_t **seqs; + int8_t *path, *sitemask; + uint64_t *pcnt, *regmask; + + if (vpos == 0) return 0; + i = clean_seqs(vpos, hash); // i is true if hash has an element with its vpos >= vpos + min_pos = i? cns[vpos]>>32 : 0x7fffffff; + if (vpos == 1) { + printf("PS\t%s\t%d\t%d\n", chr, (int)(cns[0]>>32) + 1, (int)(cns[0]>>32) + 1); + printf("M0\t%s\t%d\t%d\t%c\t%c\t%d\t0\t0\t0\t0\n//\n", chr, (int)(cns[0]>>32) + 1, (int)(cns[0]>>32) + 1, + "ACGTX"[cns[0]&3], "ACGTX"[cns[0]>>16&3], g->vpos_shift + 1); + for (k = 0; k < kh_end(hash); ++k) { + if (kh_exist(hash, k)) { + frag_t *f = &kh_val(hash, k); + if (f->vpos) continue; + f->flip = 0; + if (f->seq[0] == 0) f->phased = 0; + else f->phased = 1, f->phase = f->seq[0] - 1; + } + } + dump_aln(g, min_pos, hash); + ++g->vpos_shift; + return 1; + } + { // phase + int **cnt; + uint64_t *mask; + printf("PS\t%s\t%d\t%d\n", chr, (int)(cns[0]>>32) + 1, (int)(cns[vpos-1]>>32) + 1); + sitemask = calloc(vpos, 1); + cnt = count_all(g->k, vpos, hash); + path = dynaprog(g->k, vpos, cnt); + for (i = 0; i < vpos; ++i) free(cnt[i]); + free(cnt); + pcnt = fragphase(vpos, path, hash, 0); // do not fix chimeras when masking + mask = genmask(vpos, pcnt, &n_masked); + regmask = calloc(n_masked, 8); + for (i = 0; i < n_masked; ++i) { + regmask[i] = cns[mask[i]>>32]>>32<<32 | cns[(uint32_t)mask[i]]>>32; + for (j = mask[i]>>32; j <= (int32_t)mask[i]; ++j) + sitemask[j] = 1; + } + free(mask); + if (g->flag & FLAG_FIX_CHIMERA) { + free(pcnt); + pcnt = fragphase(vpos, path, hash, 1); + } + } + for (i = 0; i < n_masked; ++i) + printf("FL\t%s\t%d\t%d\n", chr, (int)(regmask[i]>>32) + 1, (int)regmask[i] + 1); + for (i = 0; i < vpos; ++i) { + uint64_t x = pcnt[i]; + int8_t c[2]; + c[0] = (cns[i]&0xffff)>>2 == 0? 4 : (cns[i]&3); + c[1] = (cns[i]>>16&0xffff)>>2 == 0? 4 : (cns[i]>>16&3); + printf("M%d\t%s\t%d\t%d\t%c\t%c\t%d\t%d\t%d\t%d\t%d\n", sitemask[i]+1, chr, (int)(cns[0]>>32) + 1, (int)(cns[i]>>32) + 1, "ACGTX"[c[path[i]]], "ACGTX"[c[1-path[i]]], + i + g->vpos_shift + 1, (int)(x&0xffff), (int)(x>>16&0xffff), (int)(x>>32&0xffff), (int)(x>>48&0xffff)); + } + free(path); free(pcnt); free(regmask); free(sitemask); + seqs = calloc(n_seqs, sizeof(void*)); + for (k = 0, i = 0; k < kh_end(hash); ++k) + if (kh_exist(hash, k) && kh_val(hash, k).vpos < vpos && !kh_val(hash, k).single) + seqs[i++] = &kh_val(hash, k); + n_seqs = i; + ks_introsort_rseq(n_seqs, seqs); + for (i = 0; i < n_seqs; ++i) { + frag_t *f = seqs[i]; + printf("EV\t0\t%s\t%d\t40\t%dM\t*\t0\t0\t", chr, f->vpos + 1 + g->vpos_shift, f->vlen); + for (j = 0; j < f->vlen; ++j) { + uint32_t c = cns[f->vpos + j]; + if (f->seq[j] == 0) putchar('N'); + else putchar("ACGT"[f->seq[j] == 1? (c&3) : (c>>16&3)]); + } + printf("\t*\tYP:i:%d\tYF:i:%d\tYI:i:%d\tYO:i:%d\tYS:i:%d\n", f->phase, f->flip, f->in, f->out, f->beg+1); + } + free(seqs); + printf("//\n"); + fflush(stdout); + g->vpos_shift += vpos; + dump_aln(g, min_pos, hash); + return vpos; +} + +static void update_vpos(int vpos, nseq_t *hash) +{ + khint_t k; + for (k = 0; k < kh_end(hash); ++k) { + if (kh_exist(hash, k)) { + frag_t *f = &kh_val(hash, k); + if (f->vpos < vpos) kh_del(64, hash, k); // TODO: if frag_t::seq is allocated dynamically, free it + else f->vpos -= vpos; + } + } +} + +static nseq_t *shrink_hash(nseq_t *hash) // TODO: to implement +{ + return hash; +} + +static int readaln(void *data, bam1_t *b) +{ + phaseg_t *g = (phaseg_t*)data; + int ret; + ret = bam_read1(g->fp, b); + if (ret < 0) return ret; + if (!(b->core.flag & (BAM_FUNMAP|BAM_FSECONDARY|BAM_FQCFAIL|BAM_FDUP)) && g->pre) { + if (g->n == g->m) { + g->m = g->m? g->m<<1 : 16; + g->b = realloc(g->b, g->m * sizeof(void*)); + } + g->b[g->n++] = bam_dup1(b); + } + return ret; +} + +static khash_t(set64) *loadpos(const char *fn, bam_header_t *h) +{ + gzFile fp; + kstream_t *ks; + int ret, dret; + kstring_t *str; + khash_t(set64) *hash; + + hash = kh_init(set64); + str = calloc(1, sizeof(kstring_t)); + fp = strcmp(fn, "-")? gzopen(fn, "r") : gzdopen(fileno(stdin), "r"); + ks = ks_init(fp); + while (ks_getuntil(ks, 0, str, &dret) >= 0) { + int tid = bam_get_tid(h, str->s); + if (tid >= 0 && dret != '\n') { + if (ks_getuntil(ks, 0, str, &dret) >= 0) { + uint64_t x = (uint64_t)tid<<32 | (atoi(str->s) - 1); + kh_put(set64, hash, x, &ret); + } else break; + } + if (dret != '\n') while ((dret = ks_getc(ks)) > 0 && dret != '\n'); + if (dret < 0) break; + } + ks_destroy(ks); + gzclose(fp); + free(str->s); free(str); + return hash; +} + +static int gl2cns(float q[16]) +{ + int i, j, min_ij; + float min, min2; + min = min2 = 1e30; min_ij = -1; + for (i = 0; i < 4; ++i) { + for (j = i; j < 4; ++j) { + if (q[i<<2|j] < min) min_ij = i<<2|j, min2 = min, min = q[i<<2|j]; + else if (q[i<<2|j] < min2) min2 = q[i<<2|j]; + } + } + return (min_ij>>2&3) == (min_ij&3)? 0 : 1<<18 | (min_ij>>2&3)<<16 | (min_ij&3) | (int)(min2 - min + .499) << 2; +} + +int main_phase(int argc, char *argv[]) +{ + extern void bam_init_header_hash(bam_header_t *header); + int c, tid, pos, vpos = 0, n, lasttid = -1, max_vpos = 0; + const bam_pileup1_t *plp; + bam_plp_t iter; + bam_header_t *h; + nseq_t *seqs; + uint64_t *cns = 0; + phaseg_t g; + char *fn_list = 0; + khash_t(set64) *set = 0; + errmod_t *em; + uint16_t *bases; + + memset(&g, 0, sizeof(phaseg_t)); + g.flag = FLAG_FIX_CHIMERA; + g.min_varLOD = 37; g.k = 13; g.min_baseQ = 13; g.max_depth = 256; + while ((c = getopt(argc, argv, "Q:eFq:k:b:l:D:A:")) >= 0) { + switch (c) { + case 'D': g.max_depth = atoi(optarg); break; + case 'q': g.min_varLOD = atoi(optarg); break; + case 'Q': g.min_baseQ = atoi(optarg); break; + case 'k': g.k = atoi(optarg); break; + case 'F': g.flag &= ~FLAG_FIX_CHIMERA; break; + case 'e': g.flag |= FLAG_LIST_EXCL; break; + case 'A': g.flag |= FLAG_DROP_AMBI; break; + case 'b': g.pre = strdup(optarg); break; + case 'l': fn_list = strdup(optarg); break; + } + } + if (argc == optind) { + fprintf(pysamerr, "\n"); + fprintf(pysamerr, "Usage: samtools phase [options] \n\n"); + fprintf(pysamerr, "Options: -k INT block length [%d]\n", g.k); + fprintf(pysamerr, " -b STR prefix of BAMs to output [null]\n"); + fprintf(pysamerr, " -q INT min het phred-LOD [%d]\n", g.min_varLOD); + fprintf(pysamerr, " -Q INT min base quality in het calling [%d]\n", g.min_baseQ); + fprintf(pysamerr, " -D INT max read depth [%d]\n", g.max_depth); +// fprintf(pysamerr, " -l FILE list of sites to phase [null]\n"); + fprintf(pysamerr, " -F do not attempt to fix chimeras\n"); + fprintf(pysamerr, " -A drop reads with ambiguous phase\n"); +// fprintf(pysamerr, " -e do not discover SNPs (effective with -l)\n"); + fprintf(pysamerr, "\n"); + return 1; + } + g.fp = strcmp(argv[optind], "-")? bam_open(argv[optind], "r") : bam_dopen(fileno(stdin), "r"); + h = bam_header_read(g.fp); + if (fn_list) { // read the list of sites to phase + bam_init_header_hash(h); + set = loadpos(fn_list, h); + free(fn_list); + } else g.flag &= ~FLAG_LIST_EXCL; + if (g.pre) { // open BAMs to write + char *s = malloc(strlen(g.pre) + 20); + strcpy(s, g.pre); strcat(s, ".0.bam"); g.out[0] = bam_open(s, "w"); + strcpy(s, g.pre); strcat(s, ".1.bam"); g.out[1] = bam_open(s, "w"); + strcpy(s, g.pre); strcat(s, ".chimera.bam"); g.out[2] = bam_open(s, "w"); + for (c = 0; c <= 2; ++c) bam_header_write(g.out[c], h); + free(s); + } + + iter = bam_plp_init(readaln, &g); + g.vpos_shift = 0; + seqs = kh_init(64); + em = errmod_init(1. - 0.83); + bases = calloc(g.max_depth, 2); + printf("CC\n"); + printf("CC\tDescriptions:\nCC\n"); + printf("CC\t CC comments\n"); + printf("CC\t PS start of a phase set\n"); + printf("CC\t FL filtered region\n"); + printf("CC\t M[012] markers; 0 for singletons, 1 for phased and 2 for filtered\n"); + printf("CC\t EV supporting reads; SAM format\n"); + printf("CC\t // end of a phase set\nCC\n"); + printf("CC\tFormats of PS, FL and M[012] lines (1-based coordinates):\nCC\n"); + printf("CC\t PS chr phaseSetStart phaseSetEnd\n"); + printf("CC\t FL chr filterStart filterEnd\n"); + printf("CC\t M? chr PS pos allele0 allele1 hetIndex #supports0 #errors0 #supp1 #err1\n"); + printf("CC\nCC\n"); + fflush(stdout); + while ((plp = bam_plp_auto(iter, &tid, &pos, &n)) != 0) { + int i, k, c, tmp, dophase = 1, in_set = 0; + float q[16]; + if (tid < 0) break; + if (tid != lasttid) { // change of chromosome + g.vpos_shift = 0; + if (lasttid >= 0) { + seqs = shrink_hash(seqs); + phase(&g, h->target_name[lasttid], vpos, cns, seqs); + update_vpos(0x7fffffff, seqs); + } + lasttid = tid; + vpos = 0; + } + if (set && kh_get(set64, set, (uint64_t)tid<<32 | pos) != kh_end(set)) in_set = 1; + if (n > g.max_depth) continue; // do not proceed if the depth is too high + // fill the bases array and check if there is a variant + for (i = k = 0; i < n; ++i) { + const bam_pileup1_t *p = plp + i; + uint8_t *seq; + int q, baseQ, b; + if (p->is_del || p->is_refskip) continue; + baseQ = bam1_qual(p->b)[p->qpos]; + if (baseQ < g.min_baseQ) continue; + seq = bam1_seq(p->b); + b = bam_nt16_nt4_table[bam1_seqi(seq, p->qpos)]; + if (b > 3) continue; + q = baseQ < p->b->core.qual? baseQ : p->b->core.qual; + if (q < 4) q = 4; + if (q > 63) q = 63; + bases[k++] = q<<5 | (int)bam1_strand(p->b)<<4 | b; + } + if (k == 0) continue; + errmod_cal(em, k, 4, bases, q); // compute genotype likelihood + c = gl2cns(q); // get the consensus + // tell if to proceed + if (set && (g.flag&FLAG_LIST_EXCL) && !in_set) continue; // not in the list + if (!in_set && (c&0xffff)>>2 < g.min_varLOD) continue; // not a variant + // add the variant + if (vpos == max_vpos) { + max_vpos = max_vpos? max_vpos<<1 : 128; + cns = realloc(cns, max_vpos * 8); + } + cns[vpos] = (uint64_t)pos<<32 | c; + for (i = 0; i < n; ++i) { + const bam_pileup1_t *p = plp + i; + uint64_t key; + khint_t k; + uint8_t *seq = bam1_seq(p->b); + frag_t *f; + if (p->is_del || p->is_refskip) continue; + if (p->b->core.qual == 0) continue; + // get the base code + c = nt16_nt4_table[(int)bam1_seqi(seq, p->qpos)]; + if (c == (cns[vpos]&3)) c = 1; + else if (c == (cns[vpos]>>16&3)) c = 2; + else c = 0; + // write to seqs + key = X31_hash_string(bam1_qname(p->b)); + k = kh_put(64, seqs, key, &tmp); + f = &kh_val(seqs, k); + if (tmp == 0) { // present in the hash table + if (vpos - f->vpos + 1 < MAX_VARS) { + f->vlen = vpos - f->vpos + 1; + f->seq[f->vlen-1] = c; + f->end = bam_calend(&p->b->core, bam1_cigar(p->b)); + } + dophase = 0; + } else { // absent + memset(f->seq, 0, MAX_VARS); + f->beg = p->b->core.pos; + f->end = bam_calend(&p->b->core, bam1_cigar(p->b)); + f->vpos = vpos, f->vlen = 1, f->seq[0] = c, f->single = f->phased = f->flip = f->ambig = 0; + } + } + if (dophase) { + seqs = shrink_hash(seqs); + phase(&g, h->target_name[tid], vpos, cns, seqs); + update_vpos(vpos, seqs); + cns[0] = cns[vpos]; + vpos = 0; + } + ++vpos; + } + if (tid >= 0) phase(&g, h->target_name[tid], vpos, cns, seqs); + bam_header_destroy(h); + bam_plp_destroy(iter); + bam_close(g.fp); + kh_destroy(64, seqs); + kh_destroy(set64, set); + free(cns); + errmod_destroy(em); + free(bases); + if (g.pre) { + for (c = 0; c <= 2; ++c) bam_close(g.out[c]); + free(g.pre); free(g.b); + } + return 0; +}