Imported Upstream version 0.1.12a
[samtools.git] / bam2bcf_indel.c
1 #include <assert.h>
2 #include <ctype.h>
3 #include <string.h>
4 #include "bam.h"
5 #include "bam2bcf.h"
6 #include "ksort.h"
7 #include "kaln.h"
8 #include "kprobaln.h"
9 #include "khash.h"
10 KHASH_SET_INIT_STR(rg)
11
12 #define MINUS_CONST 0x10000000
13 #define INDEL_WINDOW_SIZE 50
14 #define MIN_SUPPORT_COEF 500
15
16 void *bcf_call_add_rg(void *_hash, const char *hdtext, const char *list)
17 {
18         const char *s, *p, *q, *r, *t;
19         khash_t(rg) *hash;
20         if (list == 0 || hdtext == 0) return _hash;
21         if (_hash == 0) _hash = kh_init(rg);
22         hash = (khash_t(rg)*)_hash;
23         if ((s = strstr(hdtext, "@RG\t")) == 0) return hash;
24         do {
25                 t = strstr(s + 4, "@RG\t"); // the next @RG
26                 if ((p = strstr(s, "\tID:")) != 0) p += 4;
27                 if ((q = strstr(s, "\tPL:")) != 0) q += 4;
28                 if (p && q && (t == 0 || (p < t && q < t))) { // ID and PL are both present
29                         int lp, lq;
30                         char *x;
31                         for (r = p; *r && *r != '\t' && *r != '\n'; ++r); lp = r - p;
32                         for (r = q; *r && *r != '\t' && *r != '\n'; ++r); lq = r - q;
33                         x = calloc((lp > lq? lp : lq) + 1, 1);
34                         for (r = q; *r && *r != '\t' && *r != '\n'; ++r) x[r-q] = *r;
35                         if (strstr(list, x)) { // insert ID to the hash table
36                                 khint_t k;
37                                 int ret;
38                                 for (r = p; *r && *r != '\t' && *r != '\n'; ++r) x[r-p] = *r;
39                                 x[r-p] = 0;
40                                 k = kh_get(rg, hash, x);
41                                 if (k == kh_end(hash)) k = kh_put(rg, hash, x, &ret);
42                                 else free(x);
43                         } else free(x);
44                 }
45                 s = t;
46         } while (s);
47         return hash;
48 }
49
50 void bcf_call_del_rghash(void *_hash)
51 {
52         khint_t k;
53         khash_t(rg) *hash = (khash_t(rg)*)_hash;
54         if (hash == 0) return;
55         for (k = kh_begin(hash); k < kh_end(hash); ++k)
56                 if (kh_exist(hash, k))
57                         free((char*)kh_key(hash, k));
58         kh_destroy(rg, hash);
59 }
60
61 static int tpos2qpos(const bam1_core_t *c, const uint32_t *cigar, int32_t tpos, int is_left, int32_t *_tpos)
62 {
63         int k, x = c->pos, y = 0, last_y = 0;
64         *_tpos = c->pos;
65         for (k = 0; k < c->n_cigar; ++k) {
66                 int op = cigar[k] & BAM_CIGAR_MASK;
67                 int l = cigar[k] >> BAM_CIGAR_SHIFT;
68                 if (op == BAM_CMATCH) {
69                         if (c->pos > tpos) return y;
70                         if (x + l > tpos) {
71                                 *_tpos = tpos;
72                                 return y + (tpos - x);
73                         }
74                         x += l; y += l;
75                         last_y = y;
76                 } else if (op == BAM_CINS || op == BAM_CSOFT_CLIP) y += l;
77                 else if (op == BAM_CDEL || op == BAM_CREF_SKIP) {
78                         if (x + l > tpos) {
79                                 *_tpos = is_left? x : x + l;
80                                 return y;
81                         }
82                         x += l;
83                 }
84         }
85         *_tpos = x;
86         return last_y;
87 }
88 // FIXME: check if the inserted sequence is consistent with the homopolymer run
89 // l is the relative gap length and l_run is the length of the homopolymer on the reference
90 static inline int est_seqQ(const bcf_callaux_t *bca, int l, int l_run)
91 {
92         int q, qh;
93         q = bca->openQ + bca->extQ * (abs(l) - 1);
94         qh = l_run >= 3? (int)(bca->tandemQ * (double)abs(l) / l_run + .499) : 1000;
95         return q < qh? q : qh;
96 }
97
98 static inline int est_indelreg(int pos, const char *ref, int l, char *ins4)
99 {
100         int i, j, max = 0, max_i = pos, score = 0;
101         l = abs(l);
102         for (i = pos + 1, j = 0; ref[i]; ++i, ++j) {
103                 if (ins4) score += (toupper(ref[i]) != "ACGTN"[(int)ins4[j%l]])? -10 : 1;
104                 else score += (toupper(ref[i]) != toupper(ref[pos+1+j%l]))? -10 : 1;
105                 if (score < 0) break;
106                 if (max < score) max = score, max_i = i;
107         }
108         return max_i - pos;
109 }
110
111 int bcf_call_gap_prep(int n, int *n_plp, bam_pileup1_t **plp, int pos, bcf_callaux_t *bca, const char *ref,
112                                           const void *rghash)
113 {
114         extern void ks_introsort_uint32_t(int, uint32_t*);
115         int i, s, j, k, t, n_types, *types, max_rd_len, left, right, max_ins, *score1, *score2, max_ref2;
116         int N, K, l_run, ref_type, n_alt;
117         char *inscns = 0, *ref2, *query;
118         khash_t(rg) *hash = (khash_t(rg)*)rghash;
119         if (ref == 0 || bca == 0) return -1;
120         // mark filtered reads
121         if (rghash) {
122                 N = 0;
123                 for (s = N = 0; s < n; ++s) {
124                         for (i = 0; i < n_plp[s]; ++i) {
125                                 bam_pileup1_t *p = plp[s] + i;
126                                 const uint8_t *rg = bam_aux_get(p->b, "RG");
127                                 p->aux = 1; // filtered by default
128                                 if (rg) {
129                                         khint_t k = kh_get(rg, hash, (const char*)(rg + 1));
130                                         if (k != kh_end(hash)) p->aux = 0, ++N; // not filtered
131                                 }
132                         }
133                 }
134                 if (N == 0) return -1; // no reads left
135         }
136         // determine if there is a gap
137         for (s = N = 0; s < n; ++s) {
138                 for (i = 0; i < n_plp[s]; ++i)
139                         if (plp[s][i].indel != 0) break;
140                 if (i < n_plp[s]) break;
141         }
142         if (s == n) return -1; // there is no indel at this position.
143         for (s = N = 0; s < n; ++s) N += n_plp[s]; // N is the total number of reads
144         { // find out how many types of indels are present
145                 int m, n_alt = 0, n_tot = 0;
146                 uint32_t *aux;
147                 aux = calloc(N + 1, 4);
148                 m = max_rd_len = 0;
149                 aux[m++] = MINUS_CONST; // zero indel is always a type
150                 for (s = 0; s < n; ++s) {
151                         for (i = 0; i < n_plp[s]; ++i) {
152                                 const bam_pileup1_t *p = plp[s] + i;
153                                 if (rghash == 0 || p->aux == 0) {
154                                         ++n_tot;
155                                         if (p->indel != 0) {
156                                                 ++n_alt;
157                                                 aux[m++] = MINUS_CONST + p->indel;
158                                         }
159                                 }
160                                 j = bam_cigar2qlen(&p->b->core, bam1_cigar(p->b));
161                                 if (j > max_rd_len) max_rd_len = j;
162                         }
163                 }
164                 ks_introsort(uint32_t, m, aux);
165                 // squeeze out identical types
166                 for (i = 1, n_types = 1; i < m; ++i)
167                         if (aux[i] != aux[i-1]) ++n_types;
168                 if (n_types == 1 || n_alt * MIN_SUPPORT_COEF < n_tot) { // no indels or too few supporting reads
169                         free(aux); return -1;
170                 }
171                 types = (int*)calloc(n_types, sizeof(int));
172                 t = 0;
173                 types[t++] = aux[0] - MINUS_CONST; 
174                 for (i = 1; i < m; ++i)
175                         if (aux[i] != aux[i-1])
176                                 types[t++] = aux[i] - MINUS_CONST;
177                 free(aux);
178                 for (t = 0; t < n_types; ++t)
179                         if (types[t] == 0) break;
180                 ref_type = t; // the index of the reference type (0)
181                 assert(n_types < 64);
182         }
183         { // calculate left and right boundary
184                 left = pos > INDEL_WINDOW_SIZE? pos - INDEL_WINDOW_SIZE : 0;
185                 right = pos + INDEL_WINDOW_SIZE;
186                 if (types[0] < 0) right -= types[0];
187                 // in case the alignments stand out the reference
188                 for (i = pos; i < right; ++i)
189                         if (ref[i] == 0) break;
190                 right = i;
191         }
192         { // the length of the homopolymer run around the current position
193                 int c = bam_nt16_table[(int)ref[pos + 1]];
194                 if (c == 15) l_run = 1;
195                 else {
196                         for (i = pos + 2; ref[i]; ++i)
197                                 if (bam_nt16_table[(int)ref[i]] != c) break;
198                         l_run = i;
199                         for (i = pos; i >= 0; --i)
200                                 if (bam_nt16_table[(int)ref[i]] != c) break;
201                         l_run -= i + 1;
202                 }
203         }
204         // construct the consensus sequence
205         max_ins = types[n_types - 1]; // max_ins is at least 0
206         if (max_ins > 0) {
207                 int *inscns_aux = calloc(4 * n_types * max_ins, sizeof(int));
208                 // count the number of occurrences of each base at each position for each type of insertion
209                 for (t = 0; t < n_types; ++t) {
210                         if (types[t] > 0) {
211                                 for (s = 0; s < n; ++s) {
212                                         for (i = 0; i < n_plp[s]; ++i) {
213                                                 bam_pileup1_t *p = plp[s] + i;
214                                                 if (p->indel == types[t]) {
215                                                         uint8_t *seq = bam1_seq(p->b);
216                                                         for (k = 1; k <= p->indel; ++k) {
217                                                                 int c = bam_nt16_nt4_table[bam1_seqi(seq, p->qpos + k)];
218                                                                 if (c < 4) ++inscns_aux[(t*max_ins+(k-1))*4 + c];
219                                                         }
220                                                 }
221                                         }
222                                 }
223                         }
224                 }
225                 // use the majority rule to construct the consensus
226                 inscns = calloc(n_types * max_ins, 1);
227                 for (t = 0; t < n_types; ++t) {
228                         for (j = 0; j < types[t]; ++j) {
229                                 int max = 0, max_k = -1, *ia = &inscns_aux[(t*max_ins+j)*4];
230                                 for (k = 0; k < 4; ++k)
231                                         if (ia[k] > max)
232                                                 max = ia[k], max_k = k;
233                                 inscns[t*max_ins + j] = max? max_k : 4;
234                         }
235                 }
236                 free(inscns_aux);
237         }
238         // compute the likelihood given each type of indel for each read
239         max_ref2 = right - left + 2 + 2 * (max_ins > -types[0]? max_ins : -types[0]);
240         ref2  = calloc(max_ref2, 1);
241         query = calloc(right - left + max_rd_len + max_ins + 2, 1);
242         score1 = calloc(N * n_types, sizeof(int));
243         score2 = calloc(N * n_types, sizeof(int));
244         bca->indelreg = 0;
245         for (t = 0; t < n_types; ++t) {
246                 int l, ir;
247                 kpa_par_t apf1 = { 1e-4, 1e-2, 10 }, apf2 = { 1e-6, 1e-3, 10 };
248                 apf1.bw = apf2.bw = abs(types[t]) + 3;
249                 // compute indelreg
250                 if (types[t] == 0) ir = 0;
251                 else if (types[t] > 0) ir = est_indelreg(pos, ref, types[t], &inscns[t*max_ins]);
252                 else ir = est_indelreg(pos, ref, -types[t], 0);
253                 if (ir > bca->indelreg) bca->indelreg = ir;
254 //              fprintf(stderr, "%d, %d, %d\n", pos, types[t], ir);
255                 // write ref2
256                 for (k = 0, j = left; j <= pos; ++j)
257                         ref2[k++] = bam_nt16_nt4_table[bam_nt16_table[(int)ref[j]]];
258                 if (types[t] <= 0) j += -types[t];
259                 else for (l = 0; l < types[t]; ++l)
260                                  ref2[k++] = inscns[t*max_ins + l];
261                 if (types[0] < 0) { // mask deleted sequences to avoid a particular error in the model.
262                         int jj, tmp = types[t] >= 0? -types[0] : -types[0] + types[t];
263                         for (jj = 0; jj < tmp && j < right && ref[j]; ++jj, ++j)
264                                 ref2[k++] = 4;
265                 }
266                 for (; j < right && ref[j]; ++j)
267                         ref2[k++] = bam_nt16_nt4_table[bam_nt16_table[(int)ref[j]]];
268                 for (; k < max_ref2; ++k) ref2[k] = 4;
269                 if (j < right) right = j;
270                 // align each read to ref2
271                 for (s = K = 0; s < n; ++s) {
272                         for (i = 0; i < n_plp[s]; ++i, ++K) {
273                                 bam_pileup1_t *p = plp[s] + i;
274                                 int qbeg, qend, tbeg, tend, sc;
275                                 uint8_t *seq = bam1_seq(p->b);
276                                 // FIXME: the following skips soft clips, but using them may be more sensitive.
277                                 // determine the start and end of sequences for alignment
278                                 qbeg = tpos2qpos(&p->b->core, bam1_cigar(p->b), left,  0, &tbeg);
279                                 qend = tpos2qpos(&p->b->core, bam1_cigar(p->b), right, 1, &tend);
280                                 if (types[t] < 0) {
281                                         int l = -types[t];
282                                         tbeg = tbeg - l > left?  tbeg - l : left;
283                                 }
284                                 // write the query sequence
285                                 for (l = qbeg; l < qend; ++l)
286                                         query[l - qbeg] = bam_nt16_nt4_table[bam1_seqi(seq, l)];
287                                 { // do realignment; this is the bottleneck
288                                         const uint8_t *qual = bam1_qual(p->b), *bq;
289                                         uint8_t *qq;
290                                         qq = calloc(qend - qbeg, 1);
291                                         bq = (uint8_t*)bam_aux_get(p->b, "ZQ");
292                                         if (bq) ++bq; // skip type
293                                         for (l = qbeg; l < qend; ++l) {
294                                                 qq[l - qbeg] = bq? qual[l] + (bq[l] - 64) : qual[l];
295                                                 if (qq[l - qbeg] > 30) qq[l - qbeg] = 30;
296                                                 if (qq[l - qbeg] < 7) qq[l - qbeg] = 7;
297                                         }
298                                         sc = kpa_glocal((uint8_t*)ref2 + tbeg - left, tend - tbeg + abs(types[t]),
299                                                                         (uint8_t*)query, qend - qbeg, qq, &apf1, 0, 0);
300                                         l = (int)(100. * sc / (qend - qbeg) + .499); // used for adjusting indelQ below
301                                         if (l > 255) l = 255;
302                                         score1[K*n_types + t] = score2[K*n_types + t] = sc<<8 | l;
303                                         if (sc > 5) {
304                                                 sc = kpa_glocal((uint8_t*)ref2 + tbeg - left, tend - tbeg + abs(types[t]),
305                                                                                 (uint8_t*)query, qend - qbeg, qq, &apf2, 0, 0);
306                                                 l = (int)(100. * sc / (qend - qbeg) + .499);
307                                                 if (l > 255) l = 255;
308                                                 score2[K*n_types + t] = sc<<8 | l;
309                                         }
310                                         free(qq);
311                                 }
312 /*
313                                 for (l = 0; l < tend - tbeg + abs(types[t]); ++l)
314                                         fputc("ACGTN"[(int)ref2[tbeg-left+l]], stderr);
315                                 fputc('\n', stderr);
316                                 for (l = 0; l < qend - qbeg; ++l) fputc("ACGTN"[(int)query[l]], stderr);
317                                 fputc('\n', stderr);
318                                 fprintf(stderr, "pos=%d type=%d read=%d:%d name=%s qbeg=%d tbeg=%d score=%d\n", pos, types[t], s, i, bam1_qname(p->b), qbeg, tbeg, sc);
319 */
320                         }
321                 }
322         }
323         free(ref2); free(query);
324         { // compute indelQ
325                 int *sc, tmp, *sumq;
326                 sc   = alloca(n_types * sizeof(int));
327                 sumq = alloca(n_types * sizeof(int));
328                 memset(sumq, 0, sizeof(int) * n_types);
329                 for (s = K = 0; s < n; ++s) {
330                         for (i = 0; i < n_plp[s]; ++i, ++K) {
331                                 bam_pileup1_t *p = plp[s] + i;
332                                 int *sct = &score1[K*n_types], indelQ1, indelQ2, seqQ, indelQ;
333                                 for (t = 0; t < n_types; ++t) sc[t] = sct[t]<<6 | t;
334                                 for (t = 1; t < n_types; ++t) // insertion sort
335                                         for (j = t; j > 0 && sc[j] < sc[j-1]; --j)
336                                                 tmp = sc[j], sc[j] = sc[j-1], sc[j-1] = tmp;
337                                 /* errmod_cal() assumes that if the call is wrong, the
338                                  * likelihoods of other events are equal. This is about
339                                  * right for substitutions, but is not desired for
340                                  * indels. To reuse errmod_cal(), I have to make
341                                  * compromise for multi-allelic indels.
342                                  */
343                                 if ((sc[0]&0x3f) == ref_type) {
344                                         indelQ1 = (sc[1]>>14) - (sc[0]>>14);
345                                         seqQ = est_seqQ(bca, types[sc[1]&0x3f], l_run);
346                                 } else {
347                                         for (t = 0; t < n_types; ++t) // look for the reference type
348                                                 if ((sc[t]&0x3f) == ref_type) break;
349                                         indelQ1 = (sc[t]>>14) - (sc[0]>>14);
350                                         seqQ = est_seqQ(bca, types[sc[0]&0x3f], l_run);
351                                 }
352                                 tmp = sc[0]>>6 & 0xff;
353                                 indelQ1 = tmp > 111? 0 : (int)((1. - tmp/111.) * indelQ1 + .499); // reduce indelQ
354                                 sct = &score2[K*n_types];
355                                 for (t = 0; t < n_types; ++t) sc[t] = sct[t]<<6 | t;
356                                 for (t = 1; t < n_types; ++t) // insertion sort
357                                         for (j = t; j > 0 && sc[j] < sc[j-1]; --j)
358                                                 tmp = sc[j], sc[j] = sc[j-1], sc[j-1] = tmp;
359                                 if ((sc[0]&0x3f) == ref_type) {
360                                         indelQ2 = (sc[1]>>14) - (sc[0]>>14);
361                                 } else {
362                                         for (t = 0; t < n_types; ++t) // look for the reference type
363                                                 if ((sc[t]&0x3f) == ref_type) break;
364                                         indelQ2 = (sc[t]>>14) - (sc[0]>>14);
365                                 }
366                                 tmp = sc[0]>>6 & 0xff;
367                                 indelQ2 = tmp > 111? 0 : (int)((1. - tmp/111.) * indelQ2 + .499);
368                                 // pick the smaller between indelQ1 and indelQ2
369                                 indelQ = indelQ1 < indelQ2? indelQ1 : indelQ2;
370                                 p->aux = (sc[0]&0x3f)<<16 | seqQ<<8 | indelQ;
371                                 sumq[sc[0]&0x3f] += indelQ < seqQ? indelQ : seqQ;
372 //                              fprintf(stderr, "pos=%d read=%d:%d name=%s call=%d q=%d\n", pos, s, i, bam1_qname(p->b), types[sc[0]&0x3f], indelQ);
373                         }
374                 }
375                 // determine bca->indel_types[] and bca->inscns
376                 bca->maxins = max_ins;
377                 bca->inscns = realloc(bca->inscns, bca->maxins * 4);
378                 for (t = 0; t < n_types; ++t)
379                         sumq[t] = sumq[t]<<6 | t;
380                 for (t = 1; t < n_types; ++t) // insertion sort
381                         for (j = t; j > 0 && sumq[j] > sumq[j-1]; --j)
382                                 tmp = sumq[j], sumq[j] = sumq[j-1], sumq[j-1] = tmp;
383                 for (t = 0; t < n_types; ++t) // look for the reference type
384                         if ((sumq[t]&0x3f) == ref_type) break;
385                 if (t) { // then move the reference type to the first
386                         tmp = sumq[t];
387                         for (; t > 0; --t) sumq[t] = sumq[t-1];
388                         sumq[0] = tmp;
389                 }
390                 for (t = 0; t < 4; ++t) bca->indel_types[t] = B2B_INDEL_NULL;
391                 for (t = 0; t < 4 && t < n_types; ++t) {
392                         bca->indel_types[t] = types[sumq[t]&0x3f];
393                         memcpy(&bca->inscns[t * bca->maxins], &inscns[(sumq[t]&0x3f) * max_ins], bca->maxins);
394                 }
395                 // update p->aux
396                 for (s = n_alt = 0; s < n; ++s) {
397                         for (i = 0; i < n_plp[s]; ++i) {
398                                 bam_pileup1_t *p = plp[s] + i;
399                                 int x = types[p->aux>>16&0x3f];
400                                 for (j = 0; j < 4; ++j)
401                                         if (x == bca->indel_types[j]) break;
402                                 p->aux = j<<16 | (j == 4? 0 : (p->aux&0xffff));
403                                 if ((p->aux>>16&0x3f) > 0) ++n_alt;
404 //                              fprintf(stderr, "X pos=%d read=%d:%d name=%s call=%d type=%d q=%d seqQ=%d\n", pos, s, i, bam1_qname(p->b), p->aux>>16&63, bca->indel_types[p->aux>>16&63], p->aux&0xff, p->aux>>8&0xff);
405                         }
406                 }               
407         }
408         free(score1); free(score2);
409         // free
410         free(types); free(inscns);
411         return n_alt > 0? 0 : -1;
412 }