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Abstract

We provide preliminary evidence that existing algorithms for
inferring small-scale gene regulation networks from gene
expression data can be adapted to large-scale gene expression data
coming from hybridization microarrays. The essential steps are (1)
clustering many genes Ilneit expression time-course data into a
minimal set of clusters of co-expressed genes, (2) theoretically
modeling he various conditions under which the time-courses are
measured using a continious-time analog recurrent neural network
for the cluster mean time-courses, (3) fitting such a regulatory
model © the cluster mean time courses by simulated annealing
with weight decay, and (4) analysing several such fits for
commonalitiesin the circuit parametersets including the
connection matrices. This procedure can be used to assess the
adequacy of existing and future gene expression time-course data
sets for determining transcriptional regulatory relationships such as
coregulation.

1 Introduction

In a cell, genes can be turned “on” or “off” to varying degrees by the protein
products of other genes. When a gene is “on” it is transcribed to produce messenger
RNA (mRNA) which can subsequently be translated into protein molecules. Some
of these proteins are transcription factors which bind to DNA at specific sites and
thereby affect which genes are transcribed and how often. This trancriptional



regulation feedback circuitry provides a fundamental mechanism for information
processing in the cell. It governs differentiation into diverse cell types and many
other basic biological processes.

Recently, several new technologieshave been developedfor measuringthe
“expression” of genes as mMRNA or protein product. Improvements in conventional
fluorescently labeled antibodies against proteins have been coupled with confocal
microscopy and image processingto partially automate the simultaneous
measurement of small numbers of proteins in large numbers of individual nuclei in
the fruit flyDrosophila melanogastefl]. In a complementary way, the mRNA

levels of thousands of genes, each averaged over many cells, have been measured by
hybridization arrays for various species including the buddingageharomyces
cerevisiag?].

The high-spatial-resolution protein antibody data has been gquantitatively modeled
by “gene regulation network” circuit models [3] which use continuous-time, analog,
recurrent neural networks (Hopfield networks without an objective function) to
model tanscriptional regulation [4][5]. This approach requires some machine
learning technique tinfer the circuit parameters from the data, and a particular
variant of simulated annealing has proven effective [6][7]. Methods in current
biological use for analysing mRNA hybridization data do not infer regulatory
relationships, but rather simply cluster together genes with similar patterns of
expression acrosmé and experimental conditions [8][9]. In this paper, we explore
the extension ofi¢ gene circuit method to the mRNA hybridization data which has
much lower spatial resolution but can currently assay a thousand times more genes
than immunofluorescent image analysis.

The essential problem with using the gene circuit method, as employed for
immunoflourescence data, on hybridization data is that the number of connection
strength parameters grows between linearly and quadratically in the number of
genes (depending on sparsity assumptions) . This requires more data on each gene,
and evenfithat much data is available, simulated annealing for circuit inference
does not seem to scale well withnnumber of unknown parameters. Some form of
dimensionality reductios rcalled for. Fortunately dimensionality reduction is
availableri the present practice of clustering the large-scale time course expression
data by genesntd gene clusters. In this way one can derive a small number of
cluster-mean time courses for “aggregated genes”, and then fit a gene regulation
circuit to these cluster mea@met courses. We will discuss details of how this
analysis can be performed and then interpreted. A similar approach using somewhat
different algorithms for clustering and circuit inference has been taken by Hertz
[10].

In the following, we will first summarize the data models and algorithms used, and
then report on preliminary experiments in applying those algorithms to gene
expression data for 2467 yeast genes [9][11]. Finally we will discuss prospects for
and Imitations of the approach.

2 Data Models and Algorithms

The data modes$ ias follows. Wamiagine that there is a small, hidden regulatory
network of “aggregate genes” which regulate one another by the analog neural
network dynamics [3]
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in whichv, is the continuous-valued state variable for gene pir,od'hlcils the

matrix of positive, zero, or negative connections by which one transcription factor
can enhance or repress another, gdhds a nonlinear monotonic sigmoidal
activation function. When a particular matrix e'ﬁjtryis nonzero, there is a

regulatory “connection” from gene proflt@tgend . The regulation is enhancing
if Tis positive and repressifhg is negative. I11'i]. is zero there is no connection.

This network si run forwards from some initial condition and time-sampled to
generate a wild-type time course for the aggregate genes. In addition, various other
time coursescan be generatedunder alternativeexperimentalconditions by
manipulating the parameters. For example an entire aggregate gene (corresponding
to a cluster of real genes) could be removed from the circuit or otherwise modified
to represent mutants. Externplt conditions could be modeled as modifications

toh. Thus we get one or seveiraktcourses (trajectories) for the aggregate genes.

From such aggregatené courses, actual gene data is generated by addition of
Gaussian-distributed noise to the logarithms of the concentration variables. Each
time point in each cluster hts awn scalar standard deviation parameter (and a
mean arising from the circuit dynamics). Optionally, each gene’s expression data
may also be multiplied byimé-independent proportionality constant.
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Given his data generation model and suitable gene expression data, the problem is
to infer gene cluster memberships and the circuit parameters for the aggregate
genes’ regulatory relationships. Then, we would like to use the inferred cluster
memberships and regulatory circuitry to make testable biological predictions.

This data model departs from biological reality in many ways that could prove to be
important, both for inference and for prediction. Except for the Gaussian noise
model, each gene in a cluster is models as fully coregulated with every other one —
they are influenced the same ways by the same regulatory connection strengths.
Also, the nonlinear circuit model must not only reflect transcriptional regulation,
but all other regulatory circuitry affecting measured gene expression such as kinase-
phosphatase networks.

Under his data model, one could formulate a joint Bayesian inference problem for
the clustering and circuiférence aspects of fitting the data. But given the highly
provisional nature of the model, we simply apply in sequence an existing mixture-
of-Gaussiansclustering algorithm to preprocessthe data and reduce its
dimensionality, and then an existing gene circuit inference algorithm. Presumably a
joint optimization algorithm could be obtained by iterating these steps.

2.1 Clustering

A widely used clustering algorithm for mixure model estimation is Expectation-
Maximization (EM)2]. We use EM with a diagonal covariance in the Gaussian, so
that for each feature vector compoadatcombination of experimental condition



and tme point m a time course) and clus®@r there is a standard deviation
parameterg,,. In preprocessing, each concentration data point is divided by its

value at time zero anldeh a logarithm taken. The log ratios are clustered using
EM. Optionally, each gene’s entire feature vector may be normalized to unit length
and he cluster centeikdwise normalized during the iterative EM algorithm.

In order @ choosehte number of clusteks,we use the cross-validation algorithm
described by Smy{h3]. This involves computing the likelihood of each optimized

fit on a ést set and averaging over runs and over divisions of the data into training
and test sets. Then, we can examine the likelihood as a funciioromfer to
choose&k. Normally one would pi¢kso as to maximize cross-validated likelihood.
However,n the present application we also want to reward small vatwelsiaf

lead © smaller circuits for the circuit inference phase of the algorithm. The choice
of k will be discussed the next section.

2.2 Circuit Inference

We use the Lam-Delosme variant of simulated annealing (SA) to derive connection
strengthg, time constants and decay ratas as in previous work using this gene

circuit method [4][5]. We deto zero. The score function which SA optimizes is
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The first term represents the fit to dataThe second term is a standard weight

decay term. Thehitd rm forces solutions to stay within a bounded region in
weight space. We vary the weight decay coeffidieént order to encourage
relatively sparse connection matrix solutions.

3 Results

3.1 Data

We used th&accharomyces cerevisiata set of [9]. It includes three longer time
courses representing different ways to synchronize the normal cell cycle [11], and
five shorter time courses representing altered conditions. We used all eight time
courses for clustering, but just 8 time points of one of the longer time courses (alpha
factor synchronized cell cycle) foe tircuit inference. It is likely that multiple

long tme courses under altered conditions will be required before strong biological
predictions can be made from inferred regulatory circuit models.

3.2 Clustering

We found hat he most likely number of classes as determined by cross validation
was about 27, but thaete $ a broad plateau of high-likelihood cluster numbers
from 15 to 35 (Figure 1). This is similar to our results with another gene expression
data set for the nematode wd&@aenorhabditis elegassipplied by Stuart Kim;

these more extensive clustering experiments are summarized in Figure 2. Clustering
experimentswith synthetic data is used to understand tesséts. These
experiments show that the cross-validated log likelihood curve can indicate the
number of clusters present in the data, justifying the use of the curve for that



purpose. In more detail, synthetic data generated from 14 20-dimensional spherical
Gaussian clusters were clustered using the EM/CV algorithm. The likelihoods
showed a sharp peakkal4 unlike Figures 1 or 2. In another experiment , 14 20-
dimensional spherical Gaussian superclusters were used to generate second-level
clusters (3 subclusters per supercluster), which in turn generated synthetic data
points. This two-level hierarchical model was then clustered with the EM/CV
method. The likelihood curves (not shown) were quite similar to Figures 1 and 2,
with a higher-likelihood plateau from roughly 14 to 40.
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Figure 1.Cross-validatedd-likelihood aores, displayed@ aseraged over fumns, br EM
clustering ofS. erevisiaegene epression dat®]. Horizontalds: k, the ‘requested” or
maximal number ofluster entersn the ft. Some luster enters go unmatchea data.
Vertical ais: log likelihood sore for e ft, scatterplottednal aseraged. Likelihoods have
not beenntegrated oveny range of parametemsr fhypothesisesting. k rangesrom 2 o
40 in increments of 1. Solidé showswerageikelihood valueof eachk.
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Figure 2.Cross-validatedd-likelihood ores, weraged over 13ims, br EM dustering of
C. degansgene rpression datadm S. Kim'sdb. Horizontalxés: k, the ‘requested” or
maximal number ofluster entersn the ft. Some luster enters go unmatchea data.
Vertical ais: log likelihood sore br the it, & ax average over 13ins plus or minus one
standard deviationLeft) Fine-scale plok, =2 © 60 h increments of 2. (Right) Coarse-
scale plotk=2 © 202 n increments of 10. Both plot®w a extended plateau oflatively
likely fits betweenoughlyk =14 and k =40.

From Figures 1 and 2 and the synthetic data experiments mentioned above, we can
guess at appropriate values Kowhich take into account both the measured
likelihood of clustering and the requirements for few parameters in circuit-fitting.
For example choosikgl5 clusters would put us at the beginning of the plateau,
losing very little cluster likelihood in return for reducing the aggregate genes circuit
size from 270t 15 players. The interpretation would be that there are about 15
superclustersihierarchically clustered data, to which we will fit a 15-player



regulatory circuit. Much more aggressive would be tk=Fick 8 clusters, for a
relatively significant drop in log-likelihood in return for a further substantial
decreasenicircuit size. An acceptable range of cluster numbers (and circuit sizes)
would seem to He8 b 15.

3.3 Gene Circuit Inference

It proved possible ffit thek=15 time course using weight ded&yl but without

using hidden unitsW=0 andW=3 gave less satisfactory results. Four of the 15
clusters are shown in Figure 3 for one goodWah).( Scores for our first few
(unselected) runs aketcurrent parameter settings are shown in Table 1. Each run
took between 24 and 48 hours on one processor of an Sun Ultrasparc 60 computer.
Even with weight decay,is possible that successful fits are really overfits with

this particular data since there are about twice as many parameters as data points.

Weight <Score> <SimulatedAnnealing Number of runs
Decayw Moves>/10"6

0 1.536 +/- 0.134 2.803 +/- 0.437 3

1 0.787 +/- 0.394 2.782 +/- 0.200 10

3 1.438 +/- 0.037 2.880 +/- 0.090 4

Table 1 Score dnction parameters were A=1.0, B=0.01. Annealirsg satistics e
reported whenhé emperature dropped below 0.0001. Hhelkest eres ad visually
acceptable fits occurredW=1 uns.

The average values dfetdata fit, weight decay, and penalty terms in the score
function for W=1 were {0.378, 0.332, 0.0667} after slightly more annealing.

There were a few significant similarities between the connection matrices computed
in the two lowest-scoring runs. The most salient feature in the lowest-scoring
network was a set of direct feedback loops among its strongest connections: cluster
8 both excited and was inhibited by cluster 10, and cluster 10 excited and was
inhibited by cluster 15. This feature was preserved in the second-best run. A
systematic search for “concensus circuitry” shows convergence towards a unique
connection matrix fone¢ 8-point time series data used here, but more complete 16-
time-point data gives multiple “clusters” of connection matrices. From parameter-
counting one might expetat making robust and unique regulatory predictions will
require the use of more trajectory data taken under substantiallydifferent
conditions. Such dasaeixpected to be forthcoming.

4 Discussion

We have liustrated a procedure for deriving regulatory models from large-scale
gene expression data. As tdata becomes more comprehensive in the number and
nature of conditions under which comparable time courses are measured, this
procedure can be usen determine when biological hypotheses about gene
regulation can be robustly derived from the data.
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Figure 3 Four tustersrfumbers 9-12) of a 15-cluster mixture of Gaussians model of 2467
genes &h assayed ovem dght-point time aurse; kuster meanssliown a x) ae fit b a
gene egulation network modshpwn as o).
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