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Abstract 

Background

Bioinformatics research aimed at analyzing microarray data has emphasized various algorithms that group together genes having similar patterns of expression over all conditions tested.  However, in many instances the biologically important goal is to identify relatively small sets of genes that share coherent expression across only some conditions, rather than all or most conditions as required in traditional clustering; e.g. genes that are highly up-regulated and/or down-regulated similarly across only a subset of conditions.  Equally important is the need to learn which conditions are the decisive ones in forming such gene sets of interest, and how they relate to diverse conditional covariates, such as disease diagnosis or prognosis.

Results

We present a method for automatically identifying such candidate sets of biologically relevant genes using a combination of principal components analysis and information theoretic metrics.  To enable easy use of our methods, we have developed a data analysis package that facilitates visualization and subsequent data mining of the independent sources of significant variation present in gene microarray expression datasets (or in any other similarly structured high-dimensional dataset).  Using these methods the genes most affected by specific subsets of conditions (e.g. tissues, treatments, samples, etc.) are highlighted, guiding more informed hypothesis as to what might be driving the variation.

Conclusion
We provide an unsupervised data mining technique for diverse microarray expression datasets that is distinct from major methods now in routine use.  In test uses, it independently confirmed other methods by identifying biologically relevant genes that were identified by other techniques, such as support vector machines.  It has proven to be especially valuable in instances where there are many diverse conditions (10’s to hundreds of different tissues or cell types), a situation in which many clustering or ordering algorithms become problematical.  This approach also shows promise in other topic domains such as multispectral imaging datasets. 

Background 

Bioinformatics has placed much emphasis on using various unsupervised clustering techniques as a means to understand the information present in gene microarray expression datasets.  Clustering techniques produce a rich taxonomy of results by defining groups of genes that act more or less similarly across a number of experimental conditions. The diverse approaches to clustering genes by expression levels include k-means [1], self-organizing maps [2], hierarchical algorithms [3;4] and probabilistic models [5].  Some approaches permit clustering of the conditions as well [6;7;8].  Based on co-expression, genes that comprise individual expression clusters are often postulated to be co-regulated, and to the extent that this hypothesis is correct in any specific biological situation, the gene cluster definitions can offer key insights into gene regulatory network (GRN) structure and function. 

Another common datamining task is to try to identify small sets of genes that can serve as effective predictors of disease diagnosis or prognosis.  While clustering at its best is good at grouping a set of similarly expressed genes (across all conditions within a dataset) together, issues surrounding selection of K, stochastic effects, and of “noise” from large numbers of genes that change little over most of the conditions can prevent clustering from successfully highlighting small groups of interestingly co-expressed genes [9;10].  This often encountered problem is addressed in part by hierarchical phylogenetic ordering algorithms such as Xclust [3], but the ordering achieved is “rigid” and the information biologists seek regarding shared sub-patterns of co-expression can be obscured by both visualization constraints, and algorithmic limitations that turn out to confound and “cover” the grouping of smaller more specific gene groups that share similarities across only a subset of conditions within the larger dataset.  In any case, biologists generally have to subjectively define a cluster of genes from these phylogenetic trees based largely on human pattern recognition.  Finally, nothing inherent in the clustering approach helps to direct a biologist to which cluster is interesting or relevant.  Instead, biologists generally take the path of focussing on a group of genes exhibiting a pattern of expression that supports a specific hypothesis, or they search for a known gene or genes of interest within a cluster to form an explanation for others in the cluster. 

Support vector machines have been shown to be useful for identifying small sets of related and predictive genes [11;12;13;14], but represent a supervised learning approach that first requires one to define a set of positive examples, a set of negative examples, and a specific covariate to predict such as a functional class or disease prognosis.  For these reasons we have found it efficient and useful to use as an independent starting tool a very direct approach based on principal components analysis (PCA, see Methods section).  This approach is computationally efficient for very large datasets, especially compared with most clustering algorithms, but is also applicable to much smaller ones.  It allows one to directly explore each of the independent and diverse sources of variation present within a gene expression dataset and to subsequently identify the specific genes that vary the most, together with the conditions in which they vary.  

Unlike conventional clustering and ordering algorithms, this PCA based approach has the important virtue of permitting a gene to be highlighted as a member of more than one subset of conditions, whereas cluster membership is typically generally unique. The “single cluster assignment” quality of traditional clustering or ordering is problematical because it tends to “hide” commonality of expression that is restricted to a small, interesting, and often entirely unpredicted subgroups of tissues, cell types, treatments or other condition types.  This situation, perhaps because of inherent properties of gene network structure, will arise increasingly more often as the number and diversity of conditions within expression datasets increases.  The clustering method of Barkai [15;16] addresses this issue of multiple membership in a different way, by repeatedly using randomly-selected gene sets to search for and refine self-consistent groups.  Their approach, which is related to PCA through singular value decomposition (SVD), also permits genes to be assigned to multiple “transcription modules”, but in contrast to the method presented here, there is nor provision for correlating the modules with covariate data.

The use of principal components analysis presented here differs from some recent applications already in use in gene expression analysis.  PCA is most commonly used in bioinformatics as a means of dimensionality reduction prior to clustering [7;17] or prior to classification [18;19].  It is also used to visualize or confirm clustering results [20;19;21].  Ours is a more traditional use of PCA in that it aims to find, then examine and, where possible, help to generate hypotheses to explain many principal components.  In this manner, our work builds on earlier observations by Hilsenbeck [22] and Raychaudhuri et. al. [23] who used PCA to gain insight into the underlying factors that are measured in expression datasets, specifically the Chu et. al. yeast sporulation experiments [24], (though to some extent Raychaudhuri et. al. were focused mainly on confirming clustering results).   Wall et. al. [25] introduced a novel use of singular value decomposition (SVD) for gene expression analysis that identifies non-exclusive gene groups, and Selaru et. al. [26] illustrated the potential of PCA to detect molecular phenotypic bases for relevant clinical or biological features of human tumors.  The latter approach identifies a subset of principal components that correlate well with known covariates. The method and enabling software package we introduce here goes beyond producing gene groups and observing a few principal components.  It provides a path for systematically analyzing each principal component by identifying the genes most affected by a particular principal component and the conditions in which those genes associated with a particular principal component vary significantly.  Finally, we attempt to explain each principal component’s observed variance in terms of the condition variables deemed most likely to be driving the variance.  This is one automated and objective way of doing what a biologist naturally tries to do through inspection and pattern recognition. 

Implementation

We have developed a Python package to implement the PCA interpretation capability described in detail in the Methodology section.  This PCA analysis package has been added to CompClust developed previously [9,27].  The combined packages allow one to cluster, classify and visualize numeric datasets that have discrete or numeric annotations (referred to as labelings, or labelled datasets), and to compare labelings with confusion matrices and metrics such as normalized asymmetric mutual information (NAMI).  This PCA analysis tool (including the complete results for the dataset analysis described in the Results section) has also been made accessible through the CompClustWeb web-based interface [28].  Our software makes use of data manipulation and graphical plotting using the matplotlib package [29], and the statistics are generated using the rPy package [30] and Gary Strangman’s Python stats package [31].

The web-based front-end permits users to get a complete report on the interpretation of each principal component, including interactive PCA projection plots with outliers highlighted; detailed sorted lists of the outlier rows (genes); interactive significance-ordered trajectory plots that permit users to drill down to the individual gene level; similarly ordered significant column reports grouped by expression difference direction and ordered within group by significance, including covariate info (reordered to emphasize any suggestive covariates); and finally a report of any suggestive covariates that are well correlated with the significant column grouping/reordering, including the confusion matrices and/or statistics scores to back up the conclusions.  All principal component analysis and results generation is implemented in a Python package so that analyses of large datasets can be executed in a batch mode rather than through the graphical interface.

Results 

Application to Microarray Expression Data

We obtained gene expression data from the Genomics Institute of the Novartis Research Foundation ("GNF") Gene Expression Database via their SymAtlas web site [32,32], and used our principal components analysis tool to generate interpretations of the top 30 principal components.  The dataset contained 158 tissue samples hybridized to two Affymetrix microarray chips: U133A and GNF1H.  The dataset combines the measurements of these chips to provide a total of 33,689 unique probe identities across the 158 tissue samples.  Expression data are signal intensities estimated by Affymetrix Microarray Suite v5.  For our analysis we used the log base 2 of the expression signal, and included data for all tissues and probes (noting that absent and present calls were not provided with the signal intensities).  We used our analysis package to generate and analyze each of the 158 principal components, and reviewed the results of each of these principal components. 

As detailed in the Methodology section, for each principal component we routinely computed a set of 35 high and 35 low outlier probes, (although sets that recover smaller and larger numbers of genes per component can be – and were – examined), though a user might select different numbers.  We also identified the tissues in which the high probes showed significantly different expression than the low probes.  Visualizations produced include scatter plots of outlier genes in PCA sub-spaces (PC N vs. PC N-1), and outlier probe trajectories in original tissue order as well as with tissues ordered by decreasing difference of mean of high outliers and mean of low outliers.  The latter trajectory plot emphasizes how the outliers for a principal component show a pattern of expression that imposes a partitioning of tissues.  It is left to human interpretation to appreciate the outliers and tissue partitioning exposed by each principal component, and thus to build hypotheses that attach meaning to the sources of variation.  Example results for principal component 7 are shown in Figures 1 and 2 and Tables 1-3.  The supplemental materials contain results for additional principal components.

The Methodology section describes an approach to further assist interpretation by correlating each principal component’s tissue partitioning with any available tissue covariates.  Although some human sample covariate information is provided in our test case, the GNF human expression dataset is not amenable to this supplemental analysis because multiple subject’s RNA samples were pooled prior to amplification and microarray analysis. 

Discussion

This PCA based data-mining tool is valuable for highlighting specific patterns of expression and associating them in a convenient manner with the genes and samples responsible for those patterns.  As one example, consider the set of genes identified as “high” for principal component 7. They include a “who’s who” of extracellular matrix components (a specific subset of fibronectins, collagens, laminins plus matrix associated proteins like MFAP5, MGP, LUM; regulatory molecules that mediate stability and function of those matrix components (thrombospondin, SPARC, ADAMTS1, Plod2); and matrix associated signalling and matrix associated signal modulators (insulin like growth factor binding proteins 7, 8 and 10; Sema3c).  It is interesting and illuminating to look at the expression profiles for these genes directly at the GNF website and also in aggregate, as represented in the tissue (conditions) list in Table 2.  The most prominent contributing tissues associated with high expression of these genes are remarkable because they do not constitute a grouping that would have been selected a priori as an anticipatable biological group already known to be similar to each other and different from all others based on function or developmental origin.   

Principal component 7 drew attention to a particular subset of matrix components, matrix regulators, and matrix associated factors that are jointly used by a diverse but discrete set of tissues that would not otherwise have been grouped together.  This is relevant because a biologist interrogating the GNF database would not have thought to make such a query, nor would most traditional clustering algorithms have placed these genes close enough to each other (and separate form other things) to catalyze the same observation.  The latter is true because, in addition to this commonality, the genes in this group also differ in expression in some other tissues).   A second observation is that a number of genes on the PC7 list are associated with regulation of cell proliferation, and this might lead a biologist to consider these, as a group, in the context of tumorgenesis in these tissue types.  The observed pattern of co-expression for these genes also raises the question of what, possibly common, regulatory modules might mediate their common expression within the PC7 tissues.  The PCA grouping gives the impetus and necessary starting gene list to search for one or more transcription factors or regulatory RNAs with a similar expression pattern, or to search for a shared and perhaps evolutionarily conserved cis-acting DNA sequence motif. These working hypotheses would not have been arrived at easily by other widely used methods of gene expression analysis. 

This kind of analysis can also highlight groups of genes whose defining tissues do, in fact, present a common and coherent developmental profile that a biologist might have looked for intuitively.  One such component is PC21, for which nine of the 10 listed genes with lowest values are classic striated muscle genes whose expression is prominent in heart, skeletal muscle, tongue, and sometimes thyroid samples.  The “nonmuscle” gene is a keratin which is expressed strongly in tongue along with nonmuscle tissues.  This list also included an interesting gene (PPP1R1A, a regulatory subunit of protein phosphatase1), which is prominently expressed in the several striated muscle samples, but is – in addition – expressed in several additional tissues not shared with the bulk of the muscle group.  A search for muscle specific genes by other means typically does not include this gene, even though a role for it in striated muscle is implied within the data and highlighted by membership in PC21low.

It is important to note that principle components that carry minor fractions of total variation in the dataset can be instructive.  Here, PC7 is responsible for 0.81% of total variation and PC21 for 0.25%.  In most applications, including very current ones, the focus has generally been on the first few components that that typically account for the majority of variation.  In this study, the first principle component accounts for 67.62% of variation. The PC1 “high” genes for the GNF set happen to be those expressed at very low levels across all conditions; and PC1 “low” genes correspond to very high level expression across almost all conditions. Depending on the set of samples and the interests of the investigator, this component may or may not be biologically relevant, but results discussed above argue that it is certainly not the only interesting PC.

Conclusions 

We are encouraged by the results presented above, and by other mining of the exhaustive PC analysis, that the approach leads one to numerous biologically interesting observations and working hypotheses that complement those from conventional clustering analysis.   The software package and web interface make this style of microarray analysis straightforward and accessible.

We have applied this analysis to four additional microarray datasets and also to one multispectral imaging dataset.  In each case we have found the interpretations that the tool presented to be illuminating.  Sometimes they are complementary to conclusions drawn from traditional clustering and, other times, confirmatory.  In general, it seems that for the top few principal components the explanations are obvious but focus on very broad characteristics of the data.  Digging to the deeper components that comprise smaller but more particular substructure in the data, leads one to more subtle observations, many being complementary to standard clustering.  This is especially true for large, complex datasets like the GNF set, which offers a rich variation among many samples.

With respect to the top few components, we saw that PC1 is typically the approximate diagonal through the sample/condition space, explaining the overall variation in expression level. We have noticed previously that the top few PCs can also highlight the effects of preprocessing normalization steps or global data quality matters.   Thus, in one microarray dataset not shown here, PC2 was found to be extremely well correlated with a measure of quality of samples, as reflected by the percent of probes called present.  Given this evidence of data quality effects comprising a major part of variation in the entire dataset, one might be motivated to remove the major offending conditions, and then repeat the PCA interpretation on the remaining conditions (columns).  The idea is that a completely independent source of variation might be obscured by more dominant signals or noise present in the data from the offending condition. 

Our experience thus far leads us to think that this PCA interpretation method will make a useful contribution to a majority of microarray expression data analyses, as part of a panel of largely independent methods that are sensitive to different features in a dataset that are differently affected by variables such as sample number, gene number, and distribution of variation across the samples.  What is certain is that there are almost always multiple sources of variation in a dataset and that in any specific study their nature and relative strength is informative, whether the origin is an easily-understood biologic one, a technical one, or a poorly-understood but nonetheless biologically pertinent one. Our experience has also shown that the PCA-based analysis, such as the methods presented here, is not as vulnerable to the effects of subjective data manipulations, in particular to prefiltering of borderline meaningful probes, compared with conventional clustering algorithms.

An anticipated further improvement will come with additional software infrastructure designed to allow a novice user to extend covariate analyses to both column (sample) covariates and row (gene) covariates.  The CompClust dataset labeling capability [27] allows a user to attach diverse and numerous labelings to rows or columns.  For example we can pull in additional row (gene probe) annotations such as Gene Ontology (GO) functional groups.  Beyond explicitly comparing the NAMI significance of specific row partitionings for discrete covariates, we are constructing tests to indicate when a group of probes are found to be enriched in (or conversely under-represented in) specific GO categories, and to handle large, discrete, multi-valued distributions of values.   Our use of NAMI treats discrete covariates as discrete random variables that can have at most a single value per condition, and so does not optimally address issue of multi-valued discrete R.V.'s (e.g. GNF data has covariate "concomitant medications" with values like "asprin", "tylenol", and "asprin & tylenol").  We are considering more elaborate extensions of mutual information or alternatives that might be able to take further advantage of such multi-valued entries.

Methodology

We have developed the following algorithm for identifying and analyzing multiple independent sources of variance present within multi-dimensional sample datasets, in particular those that are produced by gene microarray expression experiments.  The overall approach can be summarized as follows: 1) perform principal components analysis of the dataset; for each principal component we can: 2) identify outlier probes for that principal component; 3) identify and order any conditions in which those outlier probes vary significantly; 4) identify any condition covariates that correlate well with the condition ordering.  By extending the interpretation of each principal component from outlier rows to ordered groups of significant columns and further to identifying statistically significant correlations with column covariates, we attempt to make full use of the available data, in an objective and data-driven way, to analyze and provide meaningful interpretations of the diverse sources of variation present within the dataset.

Determine the Principal Components of the Dataset

Our dataset D consists of nc columns (e.g. tissue samples or conditions) and nr row vectors (e.g. gene probes), each row vector [image: image1.png]X, € RC



 where [image: image2.png]1 € [1,nr|



.  Such a dataset is usually represented as a two-dimensional [image: image3.png]nr X nc



matrix (where [image: image4.png]nr > nc



).  The dataset may optionally have nk supplemental covariate annotations C associated with each row or column.  Each annotation Ck where  [image: image5.png]k € [1,nk]



 can be either discrete (e.g. sex) or continuous (e.g. age), to permit the association of one discrete value per column (e.g. values male or female), or one continuous value per column (e.g. values 12, 16, or 42).

Our procedure starts by employing principal components analysis (PCA) to sequentially identify a series of new basis vectors or axes [image: image6.png]PCy, POy, ...PC,,.



 in the high-dimensional column space [image: image7.png]


that are each aligned to capture the most as-yet unexplained variance.  This is accomplished by applying the numeric procedure singular value decomposition (SVD) to the covariance matrix of D, cov(D), to produce the decomposition [image: image8.png]cov(D) =USV?T



 that contains the eigenvectors of cov(D) in the columns of U and eigenvalues in the diagonal of S such that the eigenvalues are sorted by descending size.  Each covariance eigenvector, or principal component [image: image9.png]PCy, POy, ...PC,,.



, explains a fraction of the total variance contained in the dataset, and each principal component Pn+1 is orthogonal to the previous principal component Pn. such that they define the basis of a new vector space P.  These results are made available to the users in the form of nc plots, one for each of the principal component vectors, as well as a plot of the singular values contained in the diagonal of S to indicate the relative amount of variance each component explains.

Identify Outlier Probes for each Principal Component

Next, we project each data point [image: image10.png]


 into the new coordinate system by [image: image11.png]


, effectively rotating the entire data point set D into the new principal component axes space, producing the rotated data set P.  Each data point [image: image12.png]


in the rows of P corresponding to [image: image13.png]


 has a coordinate for each principal component axis that describes where the data point [image: image14.png]


 lies when projected along each axis [image: image15.png]PCy, POy, ...PC,,.



.  For each principal component PCn ([image: image16.png]n € [1,nc|



) we select a set of noutlier data points from each end of that principal component axis- these are the extreme, or outlier points for PCn. Hn is the set of noutlier data points having the highest coordinate values for PCn, and Ln is the set of noutlier data points having the lowest coordinate values for PCn.  These high and low outlier point sets are informative in and of themselves because they represent the most extreme of the data points along a principal axis of variation.  As such, these are one of the primary outputs generated by our procedure.  

Identify Significant Conditions for each Principal Component

The points Hn are located near one edge of the high-dimensional cloud of points, and points Ln are near the opposite edge, so points Hn are likely to have coordinate values that are highly different than points Ln in at least a subset of the original column space coordinate system.  Our procedure next seeks to identify in which of the original columns (the original axes) we observe the greatest difference of values for points Hn versus points Ln.  We achieve this by comparing the distributions of values in Hnj versus Lnj for each of the original columns j ([image: image17.png]j € [1,nd



).  We use a two-sided Wilcoxon rank sum test to estimate the likelihood that these two sets of values are drawn from the same distribution [34].  Columns that are found to have a likelihood less than a user-defined significance level test1Thresh are identified and placed into one of two column sets: UPn for those where column j has mean(Hnj ) > mean(Lnj), and DOWNn for those columns j where mean(Hnj ) < mean(Lnj).  Remaining columns that do not show significant variation are placed in the column set FLATn.  The column sets UPn and DOWNn are also meaningful outputs of our procedure, as they describe the columns in which the outliers Hn and Ln vary significantly.  Our procedure outputs these column sets ordered by the p-value significance level to aid interpretation.  Taken together, the outlier point sets and significant column sets should provide valuable insight to researchers wishing to interpret each of the sources of variation identified by the principal components procedure.

Interpret Each Principal Component Using Covariate Annotations

When provided additional covariate annotations C, the procedure seeks to determine which, if any of the annotations Ck are well correlated with the partitioning of columns into the sets {UPn , FLATn , DOWNn}.  A discrete annotation Ck containing m unique values V1, V2, … Vm also defines a partitioning of the columns { KV1 , KV2 , …, KVm } where KV1 is the set of columns that share the value V1, KV2 are those that share value V2, and so on.  An information theoretic measure known as mutual information [35] describes the degree to which two discrete random variables share information. When there is high mutual information, knowing the value of one of the variables should be useful predictor of the other variable.  We use a variant of this metric known as normalized asymmetric mutual information (NAMI), in an attempt to avoid penalizing refined partitions when compared with coarser partitions.  We construct the 3 x m confusion matrix to compare the {UPn , FLATn , DOWNn} column partitioning with the { KV1 , KV2 , …, KVm } partitioning and calculate the NAMI between the partitionings.  Those covariates Ck having a NAMI greater than a user defined threshold namiThresh are added to the set of significant covariate annotations An.  

We apply a different approach for each of the Ck that are continuous covariates.  We again use a two-tailed Wilcoxon rank sum test, including the small sample adjustments when sample size is less than 10, to determine whether any two column partitions, each containing numeric covariate values, have value distributions that differ significantly from each.  There are multiple pairs of partitions for which we calculate the Wilcoxon p-value: {UPn vs. DOWNn , UPn vs. FLATn , and FLATn vs. DOWNn }.  Those covariates having a p-value less than the user defined threshold test2Thresh for any of these pairs are added to the set of significant covariate annotations An.  

At the completion of the analysis of covariates, those in the set An, found earlier to meet the user-controlled significance thresholds, are reported along with either their corresponding confusion matrices and NAMI score for discrete-valued covariates or their pair-wise Wilcoxon p-values for continuous-valued covariates.  

Terminating Condition

In practice there is a limit to how many principal components one expects will produce meaningful interpretations, and this is dependent on both size and character of the dataset.  In all cases, the last principal component is not free to seek a source of variation because it must be orthogonal to all prior n-1 components.  To some degree that is true of the last fraction of principal components that successively explain ever-diminishing portions of the variance.  We suggest a natural terminating condition: when a principal component cannot find any columns in which the outlier sets show significant variation, there is no need to proceed to subsequent principal components. 
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Figures

Figure 1  - PC7 High and Low Outlier Probes

Scatter plot of n=33689 probe expression levels projected onto PC6 vs PC7 space with high and low outlier sets H7 (n=35) and L7 (n=35) highlighted in red.

Figure 2  - PC7 Outlier Trajectory Plot with Conditions ordered by Significance

Trajectory plots for high and low outlier sets H7 (n=35) and L7 (n=35) with tissues ordered by decreasing mean(H7) - mean(L7), and thus grouped by significance (UP7 group at left, FLAT7 group in middle and LOW7 group at right). 

Tables

Table 1  - Variance Explained by Principal Components

Table 1 lists the percentage of variance in the GNF human tissue microarray data explained by each principal component.  The first 10 components explain 80.36% of the total variance.  Principal components 11 through 158 each explain less than 0.5% of the total variance, but combined explain almost 20%.

	Principal Component
	Percentage of Variance

	1
	67.62

	2
	4.66

	3
	2.04

	4
	1.41

	5
	1.07

	6
	0.90

	7
	0.81

	8
	0.69

	9
	0.63

	10
	0.54


Table 2  - PC7 High Outlier Probes

Detailed info for outlier set H7, ordered most extreme first.

	PC-7 Value
	Name
	Description
	Function

	18.63
	COL1A2
	collagen, type I, alpha 2
	(GO:0005202) collagen;
(GO:0005201) extracellular matrix structural constituent;
(GO:0006817) phosphate transport;
(GO:0001501) skeletal development;
(GO:0008147) structural constituent of bone;

	17.89
	LUM
	lumican
	(GO:0005518) collagen binding;

(GO:0030199) collagen fibril organization;

(GO:0005207) extracellular matrix glycoprotein;

(GO:0005201) extracellular matrix structural constituent;

(GO:0005203) proteoglycan;

(GO:0007601) visual perception;

	15.48
	TPM2
	tropomyosin 2 (beta)
	(GO:0003779) actin binding;

(GO:0007517) muscle development;

(GO:0008307) structural constituent of muscle;

	15.30
	IGFBP7
	insulin-like growth factor binding protein 7
	(GO:0005520) insulin-like growth factor binding;

(GO:0008285) negative regulation of cell proliferation;

(GO:0001558) regulation of cell growth;

	14.54
	CAV1
	caveolin 1, caveolae protein, 22kDa
	(GO:0005198) structural molecule activity;

(GO:0008181) tumor suppressor;

	14.08
	COL3A1
	collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)
	(GO:0008015) circulation;

(GO:0005202) collagen;

(GO:0005201) extracellular matrix structural constituent;

(GO:0007397) histogenesis and organogenesis;

(GO:0009887) organogenesis;

(GO:0006817) phosphate transport;

	13.84
	KCTD12
	potassium channel tetramerisation domain containing 12
	(GO:0006813) potassium ion transport;

(GO:0005515) protein binding;

(GO:0005249) voltage-gated potassium channel activity;

	13.83
	COL1A1
	collagen, type I, alpha 1
	(GO:0005202) collagen;

(GO:0005201) extracellular matrix structural constituent;

(GO:0007605) perception of sound;

(GO:0006817) phosphate transport;

(GO:0001501) skeletal development;

(GO:0008147) structural constituent of bone;

	13.71
	MGP
	matrix Gla protein
	(GO:0005509) calcium ion binding;

(GO:0005201) extracellular matrix structural constituent;

(GO:0007048)  oncogenesis;

(GO:0007605) perception of sound;

(GO:0008147) structural constituent of bone;

	13.57
	COL3A1
	collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)
	(GO:0008015) circulation;

(GO:0005202) collagen;

(GO:0005201) extracellular matrix structural constituent;

(GO:0007397) histogenesis and organogenesis;

(GO:0009887) organogenesis;

(GO:0006817) phosphate transport;

	13.25
	CALD1
	caldesmon 1
	(GO:0003779) actin binding; 

(GO:0005516) calmodulin binding;

(GO:0006936) muscle contraction;

(GO:0007517) muscle development;

(GO:0017022) myosin binding;

(GO:0005523) tropomyosin binding

	13.19
	MYL9
	myosin, light polypeptide 9, regulatory
	(GO:0005509) calcium ion binding;

(GO:0008307) structural constituent of muscle

	13.12
	FN1
	fibronectin 1
	(GO:0006953) acute-phase response;

(GO:0007155) cell adhesion;

(GO:0016477) cell migration;

(GO:0005518) collagen binding;

(GO:0005201) extracellular matrix structural constituent;

(GO:0008201) heparin binding;

(GO:0009611) response to wounding

	12.71
	PLK2
	polo-like kinase 2 (Drosophila)
	(GO:0005524) ATP binding;

(GO:0043123) positive regulation of I-kappaB kinase/NF-kappaB cascade; (GO:0006468) protein amino acid phosphorylation;

(GO:0004674) protein serine/threonine kinase activity;

(GO:0004871) signal transducer activity;

(GO:0016740) transferase activity

	12.59
	CALD1
	caldesmon 1
	(GO:0003779) actin binding;

(GO:0005516) calmodulin binding;

(GO:0006936) muscle contraction;

(GO:0007517) muscle development;

(GO:0017022) myosin binding;

(GO:0005523) tropomyosin binding

	12.54
	CTGF
	connective tissue growth factor
	(GO:0006259) DNA metabolism;

(GO:0007155) cell adhesion;

(GO:0005194) cell adhesion molecule activity;

(GO:0008151) cell growth and/or maintenance;

(GO:0006928) cell motility;

(GO:0008201) heparin binding;

(GO:0005520) insulin-like growth factor binding;

(GO:0005515) protein binding;

(GO:0001558) regulation of cell growth;

(GO:0009611) response to wounding

	12.39
	D2S448
	Melanoma associated gene
	(GO:0006955) immune response;

(GO:0005152) interleukin-1 receptor antagonist activity;

(GO:0004601) peroxidase activity

	12.28
	MFAP5
	microfibrillar associated protein 5
	 (GO:0005201) extracellular matrix structural constituent

	12.24
	SEMA3C
	sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3C
	(GO:0008151) cell growth and/or maintenance;

(GO:0007275) development;

(GO:0009315) drug resistance;

(GO:0006955) immune response;

(GO:0042493) response to drug

	12.20
	ADAMTS1
	a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 1
	(GO:0008201) heparin binding;

(GO:0016787) hydrolase activity;

(GO:0005178) integrin binding;

(GO:0007229) integrin-mediated signaling pathway;

(GO:0004222) metalloendopeptidase activity;

(GO:0008237) metallopeptidase activity;

(GO:0008285) negative regulation of cell proliferation;

(GO:0006508) proteolysis and peptidolysis;

(GO:0008270) zinc ion binding

	11.99
	SPARC
	secreted protein, acidic, cysteine-rich (osteonectin)
	(GO:0005509) calcium ion binding;

(GO:0005518) collagen binding

	11.76
	F3
	coagulation factor III (thromboplastin, tissue factor)
	(GO:0007596) blood coagulation;

(GO:0003801) blood coagulation factor activity;

(GO:0004896) hematopoietin/interferon-class (D200-domain) cytokine receptor activity;

(GO:0006955) immune response;

(GO:0004872) receptor activity;
(GO:0004888) transmembrane receptor activity

	11.71
	PLS3
	plastin 3 (T isoform)
	(GO:0003779) actin binding;

(GO:0005509) calcium ion binding

	11.70
	THBS1
	thrombospondin 1
	(GO:0007596) blood coagulation;

(GO:0005509) calcium ion binding;

(GO:0007155) cell adhesion;

(GO:0005194) cell adhesion molecule activity;

(GO:0006928) cell motility;

(GO:0007275) development;

(GO:0004866) endopeptidase inhibitor activity;

(GO:0008201) heparin binding;

(GO:0007399) neurogenesis;

(GO:0005515) protein binding;
(GO:0004871) signal transducer activity;

(GO:0005198) structural molecule activity

	11.69
	PLOD2
	procollagen-lysine, 2-oxoglutarate 5-dioxygenase (lysine hydroxylase) 2
	(GO:0016491) oxidoreductase activity;

(GO:0016702) oxidoreductase activity\, acting on single donors with incorporation of molecular oxygen\, incorporation of two atoms of oxygen;

(GO:0008475) procollagen-lysine 5-dioxygenase activity;

(GO:0019538) protein metabolism;

(GO:0006464) protein modification

	11.37
	CAV1
	caveolin 1, caveolae protein, 22kDa
	(GO:0005198) structural molecule activity;

(GO:0008181) tumor suppressor

	11.36
	gnf1h04130_x_at
	None
	None

	11.28
	FN1
	fibronectin 1
	(GO:0006953) acute-phase response;

(GO:0007155) cell adhesion;

(GO:0016477) cell migration;

(GO:0005518) collagen binding;

(GO:0005201) extracellular matrix structural constituent;

(GO:0008201) heparin binding;

(GO:0009611) response to wounding

	11.18
	SMARCA1
	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 1
	(GO:0005524) ATP binding;

(GO:0008026) ATP-dependent helicase activity;

(GO:0003677) DNA binding;

(GO:0004002) adenosinetriphosphatase;

(GO:0006338) chromatin remodeling;

(GO:0004386) helicase activity;

(GO:0045182) translation regulator activity

	11.08
	TAGLN
	transgelin
	(GO:0007517) Muscle development

	10.95
	COL4A1
	collagen, type IV, alpha 1
	(GO:0003677) DNA binding;

(GO:0005202) collagen;

(GO:0005201) extracellular matrix structural constituent;

(GO:0006817) phosphate transport

	10.90
	CAV2
	caveolin 2
	(GO:0008181) tumor suppressor

	10.90
	TPM1
	tropomyosin 1 (alpha)
	(GO:0003779) actin binding;

(GO:0007517) muscle development;

(GO:0008016) regulation of heart rate;

(GO:0005200) structural constituent of cytoskeleton;

(GO:0008307) structural constituent of muscle

	10.85
	GJA1
	gap junction protein, alpha 1, 43kDa (connexin 43)
	(GO:0007267) cell-cell signaling;

(GO:0015285) connexon channel activity;

(GO:0007507) heart development;

(GO:0015075) ion transporter activity;

(GO:0006936) muscle contraction;

(GO:0007605) perception of sound;

(GO:0043123) positive regulation of I-kappaB kinase/NF-kappaB cascade;

(GO:0004871) signal transducer activity;

(GO:0006832) small molecule transport;

(GO:0006810) transport

	10.82
	COL1A2
	collagen, type I, alpha 2
	(GO:0005202) collagen;

(GO:0005201) extracellular matrix structural constituent;

(GO:0006817) phosphate transport;

(GO:0001501) skeletal development;

(GO:0008147) structural constituent of bone


Table 3  - PC7 Tissue Partitioning and Ordering

Partitioning and ordering of tissues into sets UP7, FLAT7, and DOWN7 .  Tissues within groups are ordered by decreasing mean(H7) - mean(L7), which has the effect of placing the most significantly affected conditions at the top of the UP7 list and the bottom of the DOWN7 list.   

	UP7
	FLAT7
	DOWN7

	SmoothMuscle
	Thyroid
	leukemiachronicmyelogenous(k562)

	SmoothMuscle
	Thyroid
	leukemiachronicmyelogenous(k562)

	CardiacMyocytes
	Adrenalgland
	Liver

	ADIPOCYTE
	Spinalcord
	BM-CD105+Endothelial

	ADIPOCYTE
	Amygdala
	Heart

	TestisGermCell
	Pituitary
	BM-CD33+Myeloid

	CardiacMyocytes
	Spinalcord
	BM-CD105+Endothelial

	Uterus
	Adrenalgland
	Heart

	fetalThyroid
	PrefrontalCortex
	BM-CD71+EarlyErythroid

	bronchialepithelialcells
	OccipitalLobe
	Liver

	UterusCorpus
	Prostate
	BM-CD33+Myeloid

	bronchialepithelialcells
	Amygdala
	BM-CD71+EarlyErythroid

	Uterus
	Pancreas
	lymphnode

	PLACENTA
	SkeletalMuscle
	lymphnode

	UterusCorpus
	Pancreas
	BM-CD34+

	PLACENTA
	TemporalLobe
	thymus

	fetalThyroid
	Subthalamicnucleus
	BM-CD34+

	fetallung
	MedullaOblongata
	thymus

	OlfactoryBulb
	MedullaOblongata
	leukemialymphoblastic(molt4)

	TestisInterstitial
	Pons
	leukemialymphoblastic(molt4)

	ciliaryganglion
	globuspallidus
	PB-CD14+Monocytes

	fetallung
	Hypothalamus
	PB-CD14+Monocytes

	TestisLeydigCell
	CingulateCortex
	Tonsil

	ciliaryganglion
	Pons
	Tonsil

	TestisInterstitial
	Hypothalamus
	PB-CD4+Tcells

	TestisLeydigCell
	OccipitalLobe
	PB-CD4+Tcells

	atrioventricularnode
	SkeletalMuscle
	PB-CD8+Tcells

	DRG
	caudatenucleus
	WHOLEBLOOD

	Ovary
	WholeBrain
	bonemarrow

	atrioventricularnode
	globuspallidus
	bonemarrow

	Ovary
	caudatenucleus
	WHOLEBLOOD

	TrigeminalGanglion
	CingulateCortex
	leukemiapromyelocytic(hl60)

	skin
	ColorectalAdenocarcinoma
	PB-CD8+Tcells

	TONGUE
	trachea
	721_B_lymphoblasts

	Appendix
	trachea
	leukemiapromyelocytic(hl60)

	OlfactoryBulb
	subthalamicnucleus
	721_B_lymphoblasts

	TestisGermCell
	TemporalLobe
	lymphomaburkittsRaji

	DRG
	PancreaticIslets
	lymphomaburkittsRaji

	SuperiorCervicalGanglion
	WholeBrain
	PB-CD56+NKCells

	TestisSeminiferousTubule
	ParietalLobe
	lymphomaburkittsDaudi

	TestisSeminiferousTubule
	kidney
	lymphomaburkittsDaudi

	TONGUE
	CerebellumPeduncles
	PB-CD56+NKCells

	AdrenalCortex
	Thalamus
	PB-BDCA4+Dentritic_Cells

	Appendix
	ParietalLobe
	PB-CD19+Bcells

	skin
	Thalamus
	PB-BDCA4+Dentritic_Cells

	TrigeminalGanglion
	cerebellum
	PB-CD19+Bcells

	AdrenalCortex
	kidney
	

	SuperiorCervicalGanglion
	CerebellumPeduncles
	

	PancreaticIslets
	ColorectalAdenocarcinoma
	

	testis
	Lung
	

	fetalbrain
	Lung
	

	fetalliver
	cerebellum
	

	fetalliver
	salivarygland
	

	testis
	salivarygland 
	

	fetalbrain
	
	

	Prostate
	
	

	Pituitary
	
	

	PrefrontalCortex
	
	


Additional files

Additional files 1 - PCnn-outliers.txt  (set of files)

Tab-delimited text file listing the genes that are high and low outliers for PCnn, including PCnn coefficient, and additional GNF gene annotations, including: ProbeId, Name, Aliases, Description, Function and Protein Families.

Additional files 2 – PCnn-condition-groups.txt (set of files)

Tab-delimited text file listing the conditions that are up, flat and down for PCnn, ordered by decreasing difference of means.

Additional files 3 – PCnn-eigenvector.png (set of files)

Tab-delimited text file listing the conditions that are up, flat and down for PCnn, ordered by decreasing difference of means.

Additional files 4 – PCnn-outliers.png (set of files)

Scatter plot of probe expression levels projected onto PCn-1 vs PCn space with high and low outlier sets highlighted in red.

Additional files 5 – PCnn-outlier-trajectories-order-original.png (set of files)

Trajectory plots for high and low outlier sets with tissues in the order in which the original data were provided.

Additional files 6 – PCnn-outlier-trajectories-order-meandiff.png (set of files)

Trajectory plots for high and low outlier sets with tissues ordered by decreasing mean differences, and thus grouped by significance (up group at left, flat group in middle and low group at right). 
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