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ABSTRACT 
As the amount of data and devices on the Web experiences 

exponential growth issues on how to integrate such hugely 

heterogeneous components into a scalable system become increa-

singly important. REST has proven to be a viable solution for 

such large-scale information systems. It provides a set of archi-

tectural constraints that, when applied as a whole, result in bene-

fits in terms of loose coupling, maintainability, evolvability, and 

scalability. Unfortunately, some of REST’s constraints such as the 

ones that demand self-descriptive messages or require the use of 

hypermedia as the engine of application state are rarely imple-

mented correctly. This results in tightly coupled and thus brittle 

systems. To solve these and other issues, we present JSON-LD, a 

community effort to standardize a media type targeted to 

machine-to-machine communication with inherent hypermedia 

support and rich semantics. Since JSON-LD is 100% compatible 

with traditional JSON, developers can continue to use their 

existing tools and libraries. As we show in the paper, JSON-LD 

can be used to build truly RESTful services that, at the same time, 

integrate the exposed data into the Semantic Web. The required 

additional design costs are significantly outweighed by the 

achievable benefits in terms of loose coupling, evolvability, 

scalability, self-descriptiveness, and maintainability. 

Categories and Subject Descriptors 
H.3.4 [Information Storage and Retrieval]: Systems and 

Software – Semantic Web, Web 2.0, World Wide Web (WWW). 

H.4.3 [Information Systems Applications]: Communications 

Applications – Internet. D.2.11 [Software]: Software Archi-

tectures – Service-oriented architecture (SOA) 

General Terms 
Design, Standardization 

Keywords 
Web services; REST; Semantic Web; Linked Data; JSON-LD; 

Web of Things 

1. INTRODUCTION 
The Internet has experienced exponential growth, yet, it is 

expected that in the near future the amount of data generated by 

machines (e.g. sensors) will exceed that created by humans by 

several orders of magnitude. While the lower-level technical 

problems of connecting such a large number of machines are 

being solved, issues on how to integrate these hugely hetero-

geneous datasets into a scalable system become increasingly 

important. Reusing the Web’s underlying architectural style, i.e., 

REST [1], has proven to be a viable solution to transform islands 

of data into an integrated Web of Data. It provides a set of archi-

tectural constraints that, when applied as a whole, result in a 

concrete system architecture that “emphasizes scalability of com-

ponent interactions, generality of interfaces, independent 

deployment of components, and intermediary components to 

reduce interaction latency, enforce security, and encapsulate 

legacy systems” [1]. 

While some of REST’s constraints such as stateless interaction, 

uniform interface, identification of resources, or manipulation of 

resources through representations are well understood, others are 

rarely implemented correctly; regardless of a service claiming to 

be RESTful or not. Primarily the constraints that demand self-

descriptive messages and require the use of hypermedia as the 

engine of application state are often ignored. Instead of creating 

specific media types, often, general media types with poor 

semantics are used which results in reduced visibility and requires 

out-of-band knowledge to process a message.  Similarly, instead 

of including valid state transitions in the form of hyperlinks in 

responses sent from the server, such knowledge is often 

documented out-of-band and consequently hardcoded into the 

client. To solve these issues, there are basically three options. 

The first one, and often advocated as the cleanest solution, is to 

create a new media type which specifies the application’s seman-

tics and supports the required hypermedia controls to fulfill 

REST’s hypermedia constraint. Unfortunately, this approach is 

not as straightforward as it might seem at the first sight. On one 

hand, it is not trivial to design a media type that is general enough 

for a broad range of applications, yet useful. On other hand it is 

difficult to find broad acceptance for a media type that is just 

usable in a very small application domain. Obviously, if the media 

type introduces a new serialization format, no existing client 

libraries can be used to parse representations. This then forces all 

clients to implement parsers specifically designed for this new 

media type. While such an approach might provide the best 

possible efficiency, it does not scale when the number of services 

or even just the number of entities using different media types in a 

single service increases. This is often criticized as media type 

explosion. In principle the same applies to media types that build 

on top of existing media types. A common pattern is to add, e.g., 

a +xml suffix to the media type identifier to describe that it is 

based on XML’s syntax. Even though this practice has been stan-

dardized, at least for XML for more than a decade, some client 

libraries still do not understand it. Furthermore, this pattern cannot 

be used in content type negotiation. It can thus just be seen as a 
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hint to the developer to describe how to process such a repre-

sentation. The practice of defining specialized media types for 

entities might also result in tighter coupled systems at the model 

layer as it makes it convenient for developers to reuse them as an 

application-level data model which is then shared among all sys-

tem components (see [2] for an excellent discussion about the 

different coupling facets). 

The second option is to extend an existing media type’s appli-

cation semantics with custom semantics. However, even though 

the Web is more than two decades old, surprisingly few media 

types exist that provide hypermedia support which goes beyond 

pure “GET-links” that do not have any support for semantic 

annotations. The reason for this is that it is hard to get consensus, 

and consequently support, for new processing mechanisms as 

provided by a media type.  The Atom protocol suite ([3], [4]) 

defines media types which are among the most widely used for 

such an approach. Their main application domain is the syndi-

cation and manipulation of feeds of articles or blog posts, but 

since Atom’s model has been specified general and extensible 

enough to support a broad range of applications, it is often used in 

other contexts as well; Microsoft’s OData [5], Google’s 

GData [6], and our previous work SAPS [7] are just a few 

examples. Such use beyond the original scenario is enabled by 

allowing the semantic description of links in feeds as well as in 

entries. Technically this works by setting the rel attribute of the 

atom:link element to a custom value instead of using one of the 

specified values. If an IRI (Internationalized Resource Identifier) 

is used to denote such a link’s semantics, a developer can avoid 

name collisions and allow users to look its description up by 

simply dereferencing that IRI. 

Finally, the third option is to use a completely application-

agnostic media type that focuses on the presentation of raw data 

and thus allowing the serialization syntax to be separated from the 

application semantics. XML and JSON are the most popular 

media types of that class, but, since both have no inherent support 

for hyperlinks, it is impossible to use them to build truly RESTful 

services without documenting out-of-band how hyperlinks are 

represented. Traditionally, this was also true for RDF (in all its 

serialization formats) as the used IRIs were not meant to be de-

referenced – similar to namespace declarations in XML docu-

ments. This shortcoming, that prevented networking effects to 

arise, was addressed by the introduction of the Linked Data 

principles [15] which demand dereferenceable HTTP IRIs that 

return useful information. Unsurprisingly, the Semantic Web, or 

Web of Data to avoid unnecessary misconceptions stemming from 

the historically AI-heavy term “Semantic Web”, gained huge 

traction from this initiative. 

Since the Linked Data principles align well with the REST archi-

tectural style (see [17] for an extensive analysis) it would just 

seem natural to combine their strengths. Nevertheless, the two 

remain largely separated in practice. Instead of providing Linked 

Data via RESTful Web services, current efforts deploy centralistic 

SPARQL endpoints or upload static dumps of the data. This rarely 

reflects the nature of the data, i.e., descriptions of interlinked 

resources. In our opinion this stems from the fact that average 

Web developers fear to use Semantic Web technologies; a phe-

nomenon we denoted as Semaphobia [18]. Developers are often 

overwhelmed by the (perceived) complexity or intimidated by the 

AI-heavy history of the Semantic Web. The prevalent termi-

nology, suffused with words such as Ontology, just seems to fuel 

their misconceptions, while others are waiting for a killer appli-

cation making it a classical chicken-and-egg problem. Another 

common perception is that the Semantic Web is a disruptive 

technology making it a show-stopper for enterprises needing to 

evolve their systems and build upon existing infrastructure 

investments. This relies on the fact that RDF is traditionally triple-

centric whereas most developers program their systems in an 

entity centric (think object oriented) manner. Obviously, some 

developers are also just reluctant to use new technologies. There-

fore, to mitigate these problems, these “new” technologies have to 

be introduced incrementally. 

The XML serialization format of RDF, RDF/XML [19], is a great 

example of this. While it has been around for over a decade with 

very little uptake, RDFa [20] had gained a lot of momentum 

recently. It uses the same underlying data model as RDF, but 

instead of creating a new serialization format, it is used as a 

semantic layer on top of the ubiquitous (X)HTML. This gives 

Web developers a way to easily add semantic annotations to 

HTML documents. Since this makes it much easier for search 

engines to extract structured data from Web pages, they started to 

use it to improve their search algorithms and to present the results 

in a visually more appealing way which is a clear incentive for 

developers to annotate their Web pages. The recent introduction 

of schema.org can therefore be seen a major step forward for the 

Semantic Web as it allows a broad range of data, ranging from 

events and recipes to products and people, to be annotated with a 

shared vocabulary which is understood by all major search 

engines. Unfortunately, a similar approach for machines talking to 

each other via Web services is still missing. This is the gap that 

JSON-LD, the approach we are presenting in this paper, is trying 

to fill. It uses, similar to RDFa, an already successful syntax, i.e., 

JSON, and adds a semantic layer on top of it. 

The remainder of this paper is organized as follows. In section 2 

we give an overview of related work. Then, in section 3, we 

present JSON-LD and its data model. Section 4 shows how 

JSON-LD can be used to create evolvable RESTful services and 

finally, section 5 concludes the paper and gives an overview of 

future work. 

2. RELATED WORK 
According to ProgrammableWeb’s statistics [8], three out of four 

APIs are RESTful and roughly half of them use JSON as the data 

format. It is interesting to observe that some of the most used 

APIs such as, e.g., Facebook’s Graph API, Twitter’s Streaming 

API, or Foursquare’s API are now JSON-only. One of the reasons 

why JSON overtook XML as the primary data format in Web 

APIs might be the inherent impedance mismatch between XML 

and object oriented programming constructs (the so called O/X 

impedance mismatch) which often results in severe interope-

rability problems. The fundamental problem is that the XML 

Schema language has a number of type system constructs which 

simply do not exist in commonly used object oriented program-

ming languages such as, e.g., Java. This leads to interoperability 

problems because each program stack has its own way of mapping 

the various XSD type system constructs to objects in the target 

platform’s programming language and vice versa. Recent exten-

sions for common languages such as Cω or LINQ (Language 

Integrated Query) for C# or E4X (ECMAScript for XML) for 

JavaScript ease handling of XML enormously but are not always 

available. In fact, XML was not even intended to be a generic 



data-interchange format but designed as a lightweight subset of 

SGML to simplify electronic publishing in multiple media. 

In contrast to XML, JSON, the JavaScript Object Notation, was 

specifically designed as a lightweight, language-independent data-

interchange format that is easy to parse and generate. At the same 

time it is much less complex than XML. But, this simplicity 

comes at a price. JSON has neither native hypermedia support, 

nor does it support namespaces or semantic annotations. There 

have been various proposals to solve these shortcomings and all of 

them have in common that they specify a set of reserved key-

words to express certain aspects such as, e.g., hyperlinks. 

The most prominent examples of trying to add hypermedia sup-

port to JSON are probably JSON Schema [10] and it’s trimmed 

down counterpart JSON Reference [11]. Both define a special 

keyword $ref to denote a hyperlink. While, as the name suggests, 

JSON Schema puts that type information in a schema describing 

the document, JSON Reference uses the $ref keyword directly 

within the document. It can thus be seen as a static serialization of 

the same type but it lacks support for semantic annotation to 

describe its relation to the current document (this is possible with 

JSON Schema). Two related solutions for this issue are HAL and 

Collection+JSON, but in contrast to the previously mentioned 

approaches which augment JSON, they represent a new media 

type on their own. HAL [12] uses the _links keyword instead of 

$ref but instead of setting its value directly to the link’s target, an 

object whose keys are the link relations and whose values are the 

link targets is used. It has also support to embed external 

resources within a representation. Often this is important as it 

allows applications to greatly decrease the number of required 

HTTP requests. Collection+JSON [13] is basically a JSON 

version of the Atom protocol suite to manage simple lists of enti-

ties. This media type not only specifies how links (which can be 

templated) are represented, but also how HTTP can be used to 

manipulate the various representations. 

Similar to the above described proposals, but with a different goal 

in mind, various approaches have been presented to add semantic 

annotations or namespace support to JSON. These two aspects can 

be considered to be roughly the same as the idea of semantic 

annotations is to define the semantics of a concept in a special 

namespace to avoid collisions when the same terms are reused in 

different documents. The different proposals can be classified into 

two groups based on whether namespaces are supposed to be 

dereferenceable or not. In the first group, where namespaces are 

just used to avoid collisions and are thus not expected to be de-

referenceable, often DNS-style names (com.example.

projects.namespacesInJSON) are used [14]; the syntactic 

differences of the proposals are negligible. The second group of 

approaches assumes namespaces to be dereferenceable to be able 

to retrieve further information about them. As such they are 

mostly trying to create a JSON serialization format for RDF and 

thus offer much more functionality such as typing or inter-

nationalization support. As part of their effort to standardize a 

JSON serialization format for RDF, the RDF Working group 

already compared most of the existing approaches [16]; therefore 

we would like to refer the interested reader to that document for a 

detailed comparison. Summarized, it can be said that most of the 

approaches create a new media type with specific processing 

mechanisms and that the main differences between them are 

whether they are triple- or entity-centric and the degree by which 

they rely on microsyntaxes. This determines how familiar a repre-

sentation will look to a JSON developer; an important aspect for 

the acceptance of such a format. Unfortunately, most of the 

approaches fall short in this respect. 

To overcome these and other shortcomings we introduced 

SEREDASj [18] in previous work. It is a description language for 

SEmantic REstful DAta Services and focuses on the description of 

JSON resource representations and their interconnections. It also 

allows these representations to be transformed to RDF. From 

working with different developers, we found that the separation of 

the description layer and the data is suboptimal as it effectively 

creates a second layer of interconnected resources on top of the 

data in JSON documents which increases the cognitive load on the 

developer. It was difficult for developers to understand documents 

without at the same time looking at the SEREDASj description 

document. Also, the syntax, which followed JSON Schema’s 

approach, was often considered to be too verbose. 

After having worked for quite some time on SEREDASj and 

having built several promising prototypes, we discovered the 

JSON-LD project. As it had almost the same goals we were trying 

to achieve and followed a very similar approach, we joined the, 

back then, still small community. After understanding its goals 

and mindset we decided to discontinue our work on SEREDASj in 

favor of JSON-LD as we believed we could achieve more in less 

time by joining forces, instead of working on similar, yet different 

approaches competing to solve similar problems. 

In spite of being a comparatively young project, JSON-LD has 

already had a turbulent history. According to Manu Sporny [21], 

the work was started internally at Digital Bazaar in March 2010. 

This was shortly before at the W3C RDF Next Steps Workshop 

the desire of the community for a JSON-based RDF format was 

found [22]. Consequently the RDF Working Group at W3C 

started working on a JSON-based RDF serialization on two fronts. 

It decided to quickly standardize Talis’ triple-centric 

RDF/JSON [9] for RDF experts needing a JSON-based 

serialization and to incubate on JSON-LD for average Web devel-

opers without RDF background. Unsurprisingly, this strategy soon 

ended in a general confusion as to the exact target group it is 

attempting to address and what the outcome should be [21]; the 

group did not share a common vision. Finally, in August 2011 

Thomas Steiner, the appointed co-editor, pulled the “emergency 

brake” [23] and the work in the RDF Working Group was 

stopped. Despite these happenings, we continued to work as part 

of the JSON-LD community to improve the syntax and created a 

W3C community group [24] instead of waiting for the RDF 

Working Group to decide on how to proceed. 

3. JSON-LD 
JSON-LD is an attempt to create a simple method to not only 

express Linked Data in JSON but also to add semantics to existing 

JSON documents. It has been designed to be as simple as 

possible, very terse, and human readable. Furthermore, it was a 

goal to require as little effort as possible from developers to trans-

form their plain old JSON to semantically rich JSON-LD. Conse-

quently, an entity-centric approach was followed whereas tradi-

tional Semantic Web technologies are usually triple-centric. While 

the initial versions [25] of JSON-LD looked like a more or less 

direct translation of Turtle to JSON, the syntax was changed 

dramatically in the latest versions and allows now data to be 

serialized in a way that is often indistinguishable from traditional 

JSON [26]. This is remarkable since JSON is used to serialize a 



directed graph that potentially contains cycles while its native data 

model is a tree. 

Figure 1 shows JSON-LD’s data model, a Linked Data graph. 

Nodes in the graph are called subjects or objects and edges are 

called properties (predicates in RDF). A subject is a node with at 

least one outgoing edge whereas an object is a node with at least 

one incoming edge. This implies that a node can be a subject and 

an object at the same time. To be unambiguously identifiable and 

referenceable, a subject should be labeled with an IRI. This is not 

a strict requirement though; JSON-LD also supports unlabeled 

nodes. Even though such nodes do not fulfill the requirements of 

Linked Data, they are supported as they allow certain use cases 

which require just locally referenceable data. The same applies to 

properties (edges): if they are labeled with an IRI they are refe-

renceable from other documents and thus Linked Data; otherwise 

they are just traditional JSON properties that only have a meaning 

in the specific document they are used. The situation is slightly 

different for objects. If an object is labeled by an IRI, it is called 

an object; if it is labeled by something that is not an IRI, e.g. a 

number, it is denoted as a value, i.e., a literal in RDF. 

Given the reluctance of average Web developers to use semantic 

technologies, huge efforts have been put into JSON-LD so that 

developers do not have to be knowledgeable about other semantic 

Web technologies. All a developer needs to know is JSON and 

two keywords (@context and @id) to use JSON-LD’s basic 

functionality. Since JSON-LD is 100% compatible with plain old 

JSON, developers can continue to use their existing tools and 

libraries. This is especially important for enterprises as it allows 

them to add meaning to their JSON documents in a way that is not 

disruptive to their operations and is transparent to their current 

customers. At the same time JSON-LD is expressive enough to 

support all major RDF concepts. 

The basic idea of JSON-LD is to create a description of the data in 

the form of a so called context. It links, similarly to SEREDASj 

description documents, objects and their properties in a JSON 

document to concepts in an ontology. Furthermore, it allows 

values to be type-coerced and language tagged. A context can 

either be directly embedded in a JSON-LD document or put into a 

separate file and referenced from different documents. This, and 

the fact that plain old JSON documents can reference a context 

via an HTTP link header, provides a smooth upgrade path for 

existing infrastructure as it allows most of the functionality with-

out having to change the contents of an existing document at all. 

Listing 1 contains a simple JSON-LD document that describes a 

person based on the FOAF vocabulary [27]. First, a prefix for the 

FOAF vocabulary is defined (line 3) in the embedded context 

(lines 2-10) to abbreviate the long concept IRIs. Then, in 

lines 4-7, the three JSON properties title, name, and homepage 

are mapped to concepts in the FOAF vocabulary. Additionally, 

the value of the homepage property is specified to be of the type 

@id, i.e., it is specified to be an IRI (line 8). Finally, in line 11, the 

person described in the document is unambiguously identified by 

an IRI to make it possible to reference this person in other docu-

ments. The same mechanism allows JSON-LD documents con-

taining more information to be transcluded which enables clients 

to discover new data by simply following those links; this 

principle is known as Follow Your Nose [28]. By having all data 

semantically annotated as in the example, a machine client can be 

programmed to “understand” that the document is about a person 

(line 12) and to figure out which properties specify the person’s 

title (and in which language it is; lines 13-16), name (line 17) and 

the homepage of the organization it works for (line 18). A 

JSON-LD publisher is free to choose between using terms that are 

mapped to concept IRIs in a vocabulary via a context as in the 

example and using these IRIs directly in the document. Since this 

flexibility results in variability that makes it more difficult to 

Subject Object Value Subject and 
Object 

Figure 1. A Linked Data graph 

1 { 

2   "@context": { 

3     "foaf": "http://xmlns.com/foaf/0.1/", 

4     "title": "foaf:title", 

5     "name": "foaf:name", 

6     "homepage": { 

7       "@id": "foaf:workplaceHomepage", 

8       "@type": "@id" 

9     } 

10   }, 

11   "@id": "http://me.markus-lanthaler.com", 

12   "@type": "foaf:Person", 

13   "title": [ 

14     {"@value":"Dipl.Ing.", "@language":"de"}, 

15     {"@value":"MSc", "@language": "en"} 

16   ], 

17   "name": "Markus Lanthaler", 

18   "homepage": "http://www.tugraz.at/" 

19 } 

Listing 1. An exemplary JSON-LD document 

1 [ { 

2   "@id": "http://me.markus-lanthaler.com", 

3   "@type":"http://xmlns.com/foaf/0.1/Person", 

4   "http://xmlns.com/foaf/0.1/title": [ 

5     {"@value":"Dipl.Ing.", "@language":"de"}, 

6     {"@value":"MSc", "@language": "en"} 

7   ], 

8   "http://xmlns.com/foaf/0.1/name": 

9      [ "Markus Lanthaler" ], 

10   "http://xmlns.com/foaf/0.1/ ↵ 
    workplaceHomepage": 

11      [ { "@id": "http://www.tugraz.at/" } ] 

12 } ] 

Listing 2. The expanded form of the document in Listing 1 



process the data, JSON-LD specifies two special document 

forms: expanded and compacted. 

The expanded form (Listing 2) is a JSON-LD document where all 

terms and prefixes have been expanded into full IRIs and all type 

and language coercions are defined inline so that the context can 

be eliminated from the document without losing any information. 

It can thus be seen as an explicit version of the document. To 

assure that the resulting expanded document is easy to work with, 

also all properties that allow multiple values are converted to 

array form. This is necessary as different properties in a JSON-LD 

document might map to the same IRI that requires their values to 

be merged. The more or less reverse process is compaction. It 

takes a JSON-LD document and applies a user-specified context 

to generate the most compact representation of a document, i.e., 

all full IRIs are translated to short terms (as specified in the 

supplied context) and all array values with a single entry are 

unwrapped from that array form. Compacting Listing 2 with the 

context used in Listing 1 would result in a document equal to 

Listing 1. Please note, however, that compaction is not always the 

exact inverse operation for expansion – it is, e.g., impossible to 

split properties that have been merged to the same full IRI in 

expansion. Since expansion and compaction can be used together, 

applications can use them to harmonize data representations by 

translating between different contexts. For greater flexibility, 

JSON-LD also defines a framing API method [29] which allows a 

developer to transform a document into a form that is convenient 

to process for a specific application. The developer defines a 

frame, i.e., a template, which is then used to restructure the data 

contained in an arbitrary JSON-LD document into the desired 

form. This allows the developer to subsequently work with the 

framed document just as with any other JSON document which 

means that usually all existing JSON tools and workflows can be 

retained. 

Conversion of a JSON-LD document, especially one in the 

expanded form, to RDF triples is straightforward. A subject, 

which could also be used as an object in another triple, is defined 

by @id. All other JSON-LD properties are converted to 

predicates. Finally, literal values are either taken directly from a 

property’s value, or created by taking the value of @value and 

adding language (@language) and/or type information (@type). 

The example in Listing 1 could thus be converted to, e.g., a Turtle 

document as shown in Listing 3. 

4. EVOLVABLE RESTFUL SERVICES 

WITH JSON-LD 
As mentioned in the introduction, the Hypermedia as the Engine 

of Application State (HATEOAS) constraint is one of the least 

understood constraints, and thus seldom implemented correctly. 

Annoyed by the fact that a lot of services claim to be RESTful 

regardless of violating the hypermedia constraint, Fielding [30] 

made it very clear that hypermedia is a fundamental requirement 

but since the term REST is so widely misused, there are efforts in 

the community to look for an alternative term, such as 

Hypermedia API, to denote truly RESTful services. 

A lot of systems, regardless of claiming to be RESTful, rely 

heavily on implicit state control-flow which is characteristic of the 

RPC-style. The allowed messages and how they have to be inter-

preted depends on previously exchanged messages and thus in 

which implicit state the system is in. Third parties or interme-

diaries trying to interpret the conversation need the full state 

transition table and the initial state to understand the communi-

cation which is often not available or not practical. This also 

makes it difficult or virtually impossible to recover from partial 

failures in such distributed systems. 

To solve these issues and assure evolvability, the use of hyper-

media is a core tenet of the REST architectural style. It refers to 

the use of hypermedia controls in resource representations as a 

way of navigating the state machine of an application. “A REST 

API should be entered with no prior knowledge beyond the initial 

URI (bookmark) and set of standardized media types. […] From 

that point on, all application state transitions must be driven by 

client selection of server-provided choices that are present in the 

received representations or implied by the user’s manipulation of 

those representations.” [30] While the human Web is unques-

tionably based on this type of interaction and state control-flow 

where very little is known a priori, machine-to-machine commu-

nication is often based on static contracts and out-of-band 

knowledge resulting in tight coupling. Such approaches might 

work in the short term but are condemned to break in the long 

term since assumptions about server resources will break even-

tually as resources evolve over time. Parastatidis et al. [31] define 

the set of legal interactions necessary to achieve a specific, 

application-dependent goal as the domain application protocol of 

a service. The protocol defines the interaction rules between the 

different participants. Consequently, the application state is a 

snapshot of the system at an instant in time. This coincides with 

Fielding’s definition [1] of application state which defines it as the 

“pending requests, the topology of connected components (some 

of which may be filtering buffered data), the active requests on 

those connectors, the data flow of representations in response to 

those requests, and the processing of those representations as they 

are received by the user agent.” Accordingly, the overall system 

state consists of the application state and the server state. By using 

the notion of a domain application protocol the phrase 

“hypermedia as the engine of application state” can now be 

explained as the use of hypermedia controls to advertise valid 

state transitions at runtime instead of agreeing on static contracts 

at design time. Changes in the domain application protocol can 

thus be dynamically communicated to clients. This brings some of 

the human Web’s adaptivity to the Web of machines and allows 

the building of loosely coupled and evolvable systems. Rather 

than requiring an understanding of a specific IRI structure, clients 

only need to understand the semantics or business context in 

which a link appears [31]. 

The creation of a truly RESTful service can be dramatically sim-

plified by the use of a well-defined, generic media type with 

inherent hypermedia support. Developers can then fully con-

1 @prefix rdf: <http://www.w3.org/1999/02/22- 

   rdf-syntax-ns#> . 

2 @prefix foaf: <http://xmlns.com/foaf/0.1/> . 

3  

4 <http://me.markus-lanthaler.com> 

5    rdf:type foaf:Person ; 

6    foaf:title  

7       "Dipl.Ing."@de , 

8       "MSc"@en ; 

9    foaf:name "Markus Lanthaler" ; 

10    foaf:workplaceHomepage 

11        <http://www.tugraz.at/> . 

Listing 3. Triples extracted from Listing 1 converted to Turtle 



centrate on defining the domain application protocol instead of 

having to design new media types which often are specializations 

of existing syntaxes. This can be compared to the omnipresence of 

HTML and browsers in the human Web where such standar-

dization is already well advanced. JSON-LD was specifically 

designed for such purposes. It has built-in support for domain 

semantics yet its syntax is completely independent thereof. A 

developer can thus use JSON-LD as a generic media type for a 

broad range of applications. If Semantic Web technologies, i.e., 

ontologies, are used to express the domain application protocol, it 

is possible to leverage the rich underlying model and existing 

tools for tasks such as data validation or even to make implicit 

knowledge explicit. This standardization allows the development 

process to be further streamlined as it enables the creation of 

reusable client libraries. 

The core process to create a RESTful service would then be to 

define and describe the application semantics. Every concept gets 

assigned an IRI where the definition of that concept can be looked 

up. Please note that this process is almost the same as the one 

chosen by, e.g., Atom. The only difference is that instead of 

requiring out-of-band knowledge to look up the link relation’s 

semantics, i.e., the knowledge about the IANA registry [32], the 

semantics can be directly accessed by simply dereferencing the 

IRI. A developer could then go a step further and describe the 

semantics in a machine processable way. It would, e.g., be 

possible to describe the allowed value range for a property by 

using OWL [33], a standardized ontology. This would also make 

it possible to automatically check the consistency of a domain 

application protocol and to generate human readable docu-

mentation from it. Clearly, this goes far beyond what is achievable 

with the traditional definition of media types as the descriptions 

can be reasoned with by computer programs. 

As a real-world proof of concept for the principles described in 

this paper, we have designed and implemented a Web of Things 

consisting of a central management unit and nodes equipped with 

sensors and actuators. It clearly illustrates the way in which such a 

distributed system can be modeled and implemented by using 

JSON-LD and Semantic Web technologies. For example, assume 

we have a node in each room with a door sensor and an air condi-

tioner connected to it. An application running on the management 

unit could then be programmed to turn the air conditioner off 

when the door is open. 

Figure 2 illustrates how the management unit and the nodes would 

interact. First, the management unit would establish a connection 

to the node’s entry point. The response could contain a represen-

tation as shown in Listing 4 (context defined externally for the 

sake of brevity). In the next step, the application on the manage-

ment unit would choose which link to follow. Instead of having to 

rely on type information (line 12), it would also be possible to 

create a more specific property than just sensors; this is a 

decision the domain application protocol designer has to take. 

Given that the application is interested in the door sensor, it would 

dereference the link in line 11 and the node would return a repre-

sentation similar to the one shown in Listing 5. Finally, the 

management unit would add its own callback IRI to the list of 

subscribers (lines 7-10). As soon as the reading of the sensor 

changes, the node would notify all subscribers, which at this point 

includes the management unit. This would then trigger a process 

similar to the one just described, but this time, the management 

unit would look up the air conditioner and update its represen-

tation to turn it off. 

Management 
unit 

Node 

GET / 

GET /door 

PUT /door 

POST /callback 

GET / 

GET /ac 

PUT /ac 

Access entry point to 
explore service 

Retrieve door sensor data 

Register callback IRI, i.e., 
subscribe to updates 

Notify about sensor event 

Entry point (cached) 

Access air conditioner  

Switch off air conditioner 

Figure 2. Interaction between management unit and node 

1 { 

2   "@context": "http://api.com/dap.jsonld", 

3   "@id": "/", 

4   "location": "http://api.com/room/48", 

5   "sensors": [ 

6     { 

7       "@id": "/temperature", 

8       "@type": "dap:TemperatureSensor" 

9     }, 

10     { 

11       "@id": "/door", 

12       "@type": "dap:DoorSensor" 

13     } 

14   ], 

15   "actuators": [ 

16     { 

17       "@id": "/ac", 

18       "@type": "dap:AirConditioner" 

19     } 

20   ] 

21 } 

Listing 4. The node's “homepage” 

1 { 

2   "@context": "http://api.com/dap.jsonld", 

3   "@id": "/door", 

4   "@type": "dap:DoorSensor", 

5   "node": "/", 

6   "reading": "dap:closed", 

7   "subscribers": [ 

8     "http://log.example.com/", 

9     "http://accesscontrol.example.com/" 

10   ] 

11 } 

Listing 5. The door sensor data 



While this seems overly chatty, it is worth noting that responses 

can be cached and that the developer is free to optimize represen-

tations to reduce the number of required roundtrips. For example, 

Listing 4 can be cached for long periods as it is not expected to 

change often. Alternatively, it could be heavily optimized to a 

form similar to the one shown in Listing 6 where all the required 

data is directly embedded into the “homepage” instead of being 

transcluded; obviously this renders caching almost useless as the 

representation would change continuously. Such an optimization 

can be compared to the use of image sprites or data URIs in 

HTML pages to reduce the number of required HTTP requests. 

Whilst it is completely acceptable for a service to make such 

structural changes, semantic changes to the domain application 

protocol have to be carefully evaluated as they might change the 

contract and break existing consumers relying on them. 

If OWL’s expressivity is used to describe the relationships 

between different resources, much smarter clients can be built. It 

is, e.g., possible to create a generic crawler which indexes all 

available sensors; by leveraging OWL’s class hierarchy this 

would also work for sensor types that are still unknown at design 

time. Similarly, a logging service can be created that stores 

reported sensor readings. It is enough if such a service under-

stands which property contains the reading; it is not necessary that 

it understands the reading itself. Such flexibility greatly contri-

butes to the extensibility and evolvability of a system. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper we presented JSON-LD, a community effort to stan-

dardize Linked Data in JSON. In contrast to previous approaches, 

great efforts have been made to keep the approach as simple as 

possible and to create a syntax that results in serializations that 

follow the structure of how JSON is typically used by Web de-

velopers. The syntax is 100% compatible with JSON and flexible 

enough to provide a smooth upgrade path for existing infra-

structure. This means that developers have to change neither their 

workflows nor their existing tools and programming libraries. We 

hope this lowers the entry barrier to publish Linked Data in the 

form of RESTful services and results in a broader adoption of the 

underlying ideas and principles. The additional design costs are 

significantly outweighed by the achievable benefits in terms of 

loose coupling, evolvability, scalability, self-descriptiveness, and 

maintainability. Our experiments in the context of a large-scale 

Web of Things project have delivered proofs that the presented 

approach is practical. In fact, JSON-LD could be a first step 

toward standardizing semantic RESTful Web services and could 

form the basis for various efforts that previously could not seem 

to find any common ground. By working with a community with 

different backgrounds, we hope to be able to create a balanced 

solution that builds on the efforts put into RDF in the last decade 

while having the potential to positively affect the Web as a whole. 

Given that JSON-LD is still a work in progress, we would like to 

take the chance to invite the interested reader to join the 

community at http://www.json-ld.org. 

As we have shown, JSON-LD itself is not a complete technology 

stack – it needs ontologies to express domain semantics. In future 

work we would like to investigate how a lightweight ontology to 

support a wide range of application domains could be modeled. 

Furthermore, we would like to explore various ideas to create 

smarter service clients. 
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