
On Using JSON-LD to Create Evolvable RESTful Services
Markus Lanthaler 1, 2

1
 Institute for Information Systems and Computer Media

Graz University of Technology
Graz, Austria

mail@markus-lanthaler.com

Christian Gütl 1, 2
2
 School of Information Systems
Curtin University of Technology

Perth, Australia

christian.guetl@iicm.tugraz.at

ABSTRACT
As the amount of data and devices on the Web experiences

exponential growth issues on how to integrate such hugely

heterogeneous components into a scalable system become increa-

singly important. REST has proven to be a viable solution for

such large-scale information systems. It provides a set of archi-

tectural constraints that, when applied as a whole, result in bene-

fits in terms of loose coupling, maintainability, evolvability, and

scalability. Unfortunately, some of REST’s constraints such as the

ones that demand self-descriptive messages or require the use of

hypermedia as the engine of application state are rarely imple-

mented correctly. This results in tightly coupled and thus brittle

systems. To solve these and other issues, we present JSON-LD, a

community effort to standardize a media type targeted to

machine-to-machine communication with inherent hypermedia

support and rich semantics. Since JSON-LD is 100% compatible

with traditional JSON, developers can continue to use their

existing tools and libraries. As we show in the paper, JSON-LD

can be used to build truly RESTful services that, at the same time,

integrate the exposed data into the Semantic Web. The required

additional design costs are significantly outweighed by the

achievable benefits in terms of loose coupling, evolvability,

scalability, self-descriptiveness, and maintainability.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and

Software – Semantic Web, Web 2.0, World Wide Web (WWW).

H.4.3 [Information Systems Applications]: Communications

Applications – Internet. D.2.11 [Software]: Software Archi-

tectures – Service-oriented architecture (SOA)

General Terms
Design, Standardization

Keywords
Web services; REST; Semantic Web; Linked Data; JSON-LD;

Web of Things

1. INTRODUCTION
The Internet has experienced exponential growth, yet, it is

expected that in the near future the amount of data generated by

machines (e.g. sensors) will exceed that created by humans by

several orders of magnitude. While the lower-level technical

problems of connecting such a large number of machines are

being solved, issues on how to integrate these hugely hetero-

geneous datasets into a scalable system become increasingly

important. Reusing the Web’s underlying architectural style, i.e.,

REST [1], has proven to be a viable solution to transform islands

of data into an integrated Web of Data. It provides a set of archi-

tectural constraints that, when applied as a whole, result in a

concrete system architecture that “emphasizes scalability of com-

ponent interactions, generality of interfaces, independent

deployment of components, and intermediary components to

reduce interaction latency, enforce security, and encapsulate

legacy systems” [1].

While some of REST’s constraints such as stateless interaction,

uniform interface, identification of resources, or manipulation of

resources through representations are well understood, others are

rarely implemented correctly; regardless of a service claiming to

be RESTful or not. Primarily the constraints that demand self-

descriptive messages and require the use of hypermedia as the

engine of application state are often ignored. Instead of creating

specific media types, often, general media types with poor

semantics are used which results in reduced visibility and requires

out-of-band knowledge to process a message. Similarly, instead

of including valid state transitions in the form of hyperlinks in

responses sent from the server, such knowledge is often

documented out-of-band and consequently hardcoded into the

client. To solve these issues, there are basically three options.

The first one, and often advocated as the cleanest solution, is to

create a new media type which specifies the application’s seman-

tics and supports the required hypermedia controls to fulfill

REST’s hypermedia constraint. Unfortunately, this approach is

not as straightforward as it might seem at the first sight. On one

hand, it is not trivial to design a media type that is general enough

for a broad range of applications, yet useful. On other hand it is

difficult to find broad acceptance for a media type that is just

usable in a very small application domain. Obviously, if the media

type introduces a new serialization format, no existing client

libraries can be used to parse representations. This then forces all

clients to implement parsers specifically designed for this new

media type. While such an approach might provide the best

possible efficiency, it does not scale when the number of services

or even just the number of entities using different media types in a

single service increases. This is often criticized as media type

explosion. In principle the same applies to media types that build

on top of existing media types. A common pattern is to add, e.g.,

a +xml suffix to the media type identifier to describe that it is

based on XML’s syntax. Even though this practice has been stan-

dardized, at least for XML for more than a decade, some client

libraries still do not understand it. Furthermore, this pattern cannot

be used in content type negotiation. It can thus just be seen as a

Copyright is held by the author/owner(s).
WS-REST 2012, April 2012, Lyon, France.

Copyright 2012 ACM 978-1-4503-1190-8/12/04…$5.00

hint to the developer to describe how to process such a repre-

sentation. The practice of defining specialized media types for

entities might also result in tighter coupled systems at the model

layer as it makes it convenient for developers to reuse them as an

application-level data model which is then shared among all sys-

tem components (see [2] for an excellent discussion about the

different coupling facets).

The second option is to extend an existing media type’s appli-

cation semantics with custom semantics. However, even though

the Web is more than two decades old, surprisingly few media

types exist that provide hypermedia support which goes beyond

pure “GET-links” that do not have any support for semantic

annotations. The reason for this is that it is hard to get consensus,

and consequently support, for new processing mechanisms as

provided by a media type. The Atom protocol suite ([3], [4])

defines media types which are among the most widely used for

such an approach. Their main application domain is the syndi-

cation and manipulation of feeds of articles or blog posts, but

since Atom’s model has been specified general and extensible

enough to support a broad range of applications, it is often used in

other contexts as well; Microsoft’s OData [5], Google’s

GData [6], and our previous work SAPS [7] are just a few

examples. Such use beyond the original scenario is enabled by

allowing the semantic description of links in feeds as well as in

entries. Technically this works by setting the rel attribute of the

atom:link element to a custom value instead of using one of the

specified values. If an IRI (Internationalized Resource Identifier)

is used to denote such a link’s semantics, a developer can avoid

name collisions and allow users to look its description up by

simply dereferencing that IRI.

Finally, the third option is to use a completely application-

agnostic media type that focuses on the presentation of raw data

and thus allowing the serialization syntax to be separated from the

application semantics. XML and JSON are the most popular

media types of that class, but, since both have no inherent support

for hyperlinks, it is impossible to use them to build truly RESTful

services without documenting out-of-band how hyperlinks are

represented. Traditionally, this was also true for RDF (in all its

serialization formats) as the used IRIs were not meant to be de-

referenced – similar to namespace declarations in XML docu-

ments. This shortcoming, that prevented networking effects to

arise, was addressed by the introduction of the Linked Data

principles [15] which demand dereferenceable HTTP IRIs that

return useful information. Unsurprisingly, the Semantic Web, or

Web of Data to avoid unnecessary misconceptions stemming from

the historically AI-heavy term “Semantic Web”, gained huge

traction from this initiative.

Since the Linked Data principles align well with the REST archi-

tectural style (see [17] for an extensive analysis) it would just

seem natural to combine their strengths. Nevertheless, the two

remain largely separated in practice. Instead of providing Linked

Data via RESTful Web services, current efforts deploy centralistic

SPARQL endpoints or upload static dumps of the data. This rarely

reflects the nature of the data, i.e., descriptions of interlinked

resources. In our opinion this stems from the fact that average

Web developers fear to use Semantic Web technologies; a phe-

nomenon we denoted as Semaphobia [18]. Developers are often

overwhelmed by the (perceived) complexity or intimidated by the

AI-heavy history of the Semantic Web. The prevalent termi-

nology, suffused with words such as Ontology, just seems to fuel

their misconceptions, while others are waiting for a killer appli-

cation making it a classical chicken-and-egg problem. Another

common perception is that the Semantic Web is a disruptive

technology making it a show-stopper for enterprises needing to

evolve their systems and build upon existing infrastructure

investments. This relies on the fact that RDF is traditionally triple-

centric whereas most developers program their systems in an

entity centric (think object oriented) manner. Obviously, some

developers are also just reluctant to use new technologies. There-

fore, to mitigate these problems, these “new” technologies have to

be introduced incrementally.

The XML serialization format of RDF, RDF/XML [19], is a great

example of this. While it has been around for over a decade with

very little uptake, RDFa [20] had gained a lot of momentum

recently. It uses the same underlying data model as RDF, but

instead of creating a new serialization format, it is used as a

semantic layer on top of the ubiquitous (X)HTML. This gives

Web developers a way to easily add semantic annotations to

HTML documents. Since this makes it much easier for search

engines to extract structured data from Web pages, they started to

use it to improve their search algorithms and to present the results

in a visually more appealing way which is a clear incentive for

developers to annotate their Web pages. The recent introduction

of schema.org can therefore be seen a major step forward for the

Semantic Web as it allows a broad range of data, ranging from

events and recipes to products and people, to be annotated with a

shared vocabulary which is understood by all major search

engines. Unfortunately, a similar approach for machines talking to

each other via Web services is still missing. This is the gap that

JSON-LD, the approach we are presenting in this paper, is trying

to fill. It uses, similar to RDFa, an already successful syntax, i.e.,

JSON, and adds a semantic layer on top of it.

The remainder of this paper is organized as follows. In section 2

we give an overview of related work. Then, in section 3, we

present JSON-LD and its data model. Section 4 shows how

JSON-LD can be used to create evolvable RESTful services and

finally, section 5 concludes the paper and gives an overview of

future work.

2. RELATED WORK
According to ProgrammableWeb’s statistics [8], three out of four

APIs are RESTful and roughly half of them use JSON as the data

format. It is interesting to observe that some of the most used

APIs such as, e.g., Facebook’s Graph API, Twitter’s Streaming

API, or Foursquare’s API are now JSON-only. One of the reasons

why JSON overtook XML as the primary data format in Web

APIs might be the inherent impedance mismatch between XML

and object oriented programming constructs (the so called O/X

impedance mismatch) which often results in severe interope-

rability problems. The fundamental problem is that the XML

Schema language has a number of type system constructs which

simply do not exist in commonly used object oriented program-

ming languages such as, e.g., Java. This leads to interoperability

problems because each program stack has its own way of mapping

the various XSD type system constructs to objects in the target

platform’s programming language and vice versa. Recent exten-

sions for common languages such as Cω or LINQ (Language

Integrated Query) for C# or E4X (ECMAScript for XML) for

JavaScript ease handling of XML enormously but are not always

available. In fact, XML was not even intended to be a generic

data-interchange format but designed as a lightweight subset of

SGML to simplify electronic publishing in multiple media.

In contrast to XML, JSON, the JavaScript Object Notation, was

specifically designed as a lightweight, language-independent data-

interchange format that is easy to parse and generate. At the same

time it is much less complex than XML. But, this simplicity

comes at a price. JSON has neither native hypermedia support,

nor does it support namespaces or semantic annotations. There

have been various proposals to solve these shortcomings and all of

them have in common that they specify a set of reserved key-

words to express certain aspects such as, e.g., hyperlinks.

The most prominent examples of trying to add hypermedia sup-

port to JSON are probably JSON Schema [10] and it’s trimmed

down counterpart JSON Reference [11]. Both define a special

keyword $ref to denote a hyperlink. While, as the name suggests,

JSON Schema puts that type information in a schema describing

the document, JSON Reference uses the $ref keyword directly

within the document. It can thus be seen as a static serialization of

the same type but it lacks support for semantic annotation to

describe its relation to the current document (this is possible with

JSON Schema). Two related solutions for this issue are HAL and

Collection+JSON, but in contrast to the previously mentioned

approaches which augment JSON, they represent a new media

type on their own. HAL [12] uses the _links keyword instead of

$ref but instead of setting its value directly to the link’s target, an

object whose keys are the link relations and whose values are the

link targets is used. It has also support to embed external

resources within a representation. Often this is important as it

allows applications to greatly decrease the number of required

HTTP requests. Collection+JSON [13] is basically a JSON

version of the Atom protocol suite to manage simple lists of enti-

ties. This media type not only specifies how links (which can be

templated) are represented, but also how HTTP can be used to

manipulate the various representations.

Similar to the above described proposals, but with a different goal

in mind, various approaches have been presented to add semantic

annotations or namespace support to JSON. These two aspects can

be considered to be roughly the same as the idea of semantic

annotations is to define the semantics of a concept in a special

namespace to avoid collisions when the same terms are reused in

different documents. The different proposals can be classified into

two groups based on whether namespaces are supposed to be

dereferenceable or not. In the first group, where namespaces are

just used to avoid collisions and are thus not expected to be de-

referenceable, often DNS-style names (com.example.

projects.namespacesInJSON) are used [14]; the syntactic

differences of the proposals are negligible. The second group of

approaches assumes namespaces to be dereferenceable to be able

to retrieve further information about them. As such they are

mostly trying to create a JSON serialization format for RDF and

thus offer much more functionality such as typing or inter-

nationalization support. As part of their effort to standardize a

JSON serialization format for RDF, the RDF Working group

already compared most of the existing approaches [16]; therefore

we would like to refer the interested reader to that document for a

detailed comparison. Summarized, it can be said that most of the

approaches create a new media type with specific processing

mechanisms and that the main differences between them are

whether they are triple- or entity-centric and the degree by which

they rely on microsyntaxes. This determines how familiar a repre-

sentation will look to a JSON developer; an important aspect for

the acceptance of such a format. Unfortunately, most of the

approaches fall short in this respect.

To overcome these and other shortcomings we introduced

SEREDASj [18] in previous work. It is a description language for

SEmantic REstful DAta Services and focuses on the description of

JSON resource representations and their interconnections. It also

allows these representations to be transformed to RDF. From

working with different developers, we found that the separation of

the description layer and the data is suboptimal as it effectively

creates a second layer of interconnected resources on top of the

data in JSON documents which increases the cognitive load on the

developer. It was difficult for developers to understand documents

without at the same time looking at the SEREDASj description

document. Also, the syntax, which followed JSON Schema’s

approach, was often considered to be too verbose.

After having worked for quite some time on SEREDASj and

having built several promising prototypes, we discovered the

JSON-LD project. As it had almost the same goals we were trying

to achieve and followed a very similar approach, we joined the,

back then, still small community. After understanding its goals

and mindset we decided to discontinue our work on SEREDASj in

favor of JSON-LD as we believed we could achieve more in less

time by joining forces, instead of working on similar, yet different

approaches competing to solve similar problems.

In spite of being a comparatively young project, JSON-LD has

already had a turbulent history. According to Manu Sporny [21],

the work was started internally at Digital Bazaar in March 2010.

This was shortly before at the W3C RDF Next Steps Workshop

the desire of the community for a JSON-based RDF format was

found [22]. Consequently the RDF Working Group at W3C

started working on a JSON-based RDF serialization on two fronts.

It decided to quickly standardize Talis’ triple-centric

RDF/JSON [9] for RDF experts needing a JSON-based

serialization and to incubate on JSON-LD for average Web devel-

opers without RDF background. Unsurprisingly, this strategy soon

ended in a general confusion as to the exact target group it is

attempting to address and what the outcome should be [21]; the

group did not share a common vision. Finally, in August 2011

Thomas Steiner, the appointed co-editor, pulled the “emergency

brake” [23] and the work in the RDF Working Group was

stopped. Despite these happenings, we continued to work as part

of the JSON-LD community to improve the syntax and created a

W3C community group [24] instead of waiting for the RDF

Working Group to decide on how to proceed.

3. JSON-LD
JSON-LD is an attempt to create a simple method to not only

express Linked Data in JSON but also to add semantics to existing

JSON documents. It has been designed to be as simple as

possible, very terse, and human readable. Furthermore, it was a

goal to require as little effort as possible from developers to trans-

form their plain old JSON to semantically rich JSON-LD. Conse-

quently, an entity-centric approach was followed whereas tradi-

tional Semantic Web technologies are usually triple-centric. While

the initial versions [25] of JSON-LD looked like a more or less

direct translation of Turtle to JSON, the syntax was changed

dramatically in the latest versions and allows now data to be

serialized in a way that is often indistinguishable from traditional

JSON [26]. This is remarkable since JSON is used to serialize a

directed graph that potentially contains cycles while its native data

model is a tree.

Figure 1 shows JSON-LD’s data model, a Linked Data graph.

Nodes in the graph are called subjects or objects and edges are

called properties (predicates in RDF). A subject is a node with at

least one outgoing edge whereas an object is a node with at least

one incoming edge. This implies that a node can be a subject and

an object at the same time. To be unambiguously identifiable and

referenceable, a subject should be labeled with an IRI. This is not

a strict requirement though; JSON-LD also supports unlabeled

nodes. Even though such nodes do not fulfill the requirements of

Linked Data, they are supported as they allow certain use cases

which require just locally referenceable data. The same applies to

properties (edges): if they are labeled with an IRI they are refe-

renceable from other documents and thus Linked Data; otherwise

they are just traditional JSON properties that only have a meaning

in the specific document they are used. The situation is slightly

different for objects. If an object is labeled by an IRI, it is called

an object; if it is labeled by something that is not an IRI, e.g. a

number, it is denoted as a value, i.e., a literal in RDF.

Given the reluctance of average Web developers to use semantic

technologies, huge efforts have been put into JSON-LD so that

developers do not have to be knowledgeable about other semantic

Web technologies. All a developer needs to know is JSON and

two keywords (@context and @id) to use JSON-LD’s basic

functionality. Since JSON-LD is 100% compatible with plain old

JSON, developers can continue to use their existing tools and

libraries. This is especially important for enterprises as it allows

them to add meaning to their JSON documents in a way that is not

disruptive to their operations and is transparent to their current

customers. At the same time JSON-LD is expressive enough to

support all major RDF concepts.

The basic idea of JSON-LD is to create a description of the data in

the form of a so called context. It links, similarly to SEREDASj

description documents, objects and their properties in a JSON

document to concepts in an ontology. Furthermore, it allows

values to be type-coerced and language tagged. A context can

either be directly embedded in a JSON-LD document or put into a

separate file and referenced from different documents. This, and

the fact that plain old JSON documents can reference a context

via an HTTP link header, provides a smooth upgrade path for

existing infrastructure as it allows most of the functionality with-

out having to change the contents of an existing document at all.

Listing 1 contains a simple JSON-LD document that describes a

person based on the FOAF vocabulary [27]. First, a prefix for the

FOAF vocabulary is defined (line 3) in the embedded context

(lines 2-10) to abbreviate the long concept IRIs. Then, in

lines 4-7, the three JSON properties title, name, and homepage

are mapped to concepts in the FOAF vocabulary. Additionally,

the value of the homepage property is specified to be of the type

@id, i.e., it is specified to be an IRI (line 8). Finally, in line 11, the

person described in the document is unambiguously identified by

an IRI to make it possible to reference this person in other docu-

ments. The same mechanism allows JSON-LD documents con-

taining more information to be transcluded which enables clients

to discover new data by simply following those links; this

principle is known as Follow Your Nose [28]. By having all data

semantically annotated as in the example, a machine client can be

programmed to “understand” that the document is about a person

(line 12) and to figure out which properties specify the person’s

title (and in which language it is; lines 13-16), name (line 17) and

the homepage of the organization it works for (line 18). A

JSON-LD publisher is free to choose between using terms that are

mapped to concept IRIs in a vocabulary via a context as in the

example and using these IRIs directly in the document. Since this

flexibility results in variability that makes it more difficult to

Subject Object Value Subject and
Object

Figure 1. A Linked Data graph

1 {

2 "@context": {

3 "foaf": "http://xmlns.com/foaf/0.1/",

4 "title": "foaf:title",

5 "name": "foaf:name",

6 "homepage": {

7 "@id": "foaf:workplaceHomepage",

8 "@type": "@id"

9 }

10 },

11 "@id": "http://me.markus-lanthaler.com",

12 "@type": "foaf:Person",

13 "title": [

14 {"@value":"Dipl.Ing.", "@language":"de"},

15 {"@value":"MSc", "@language": "en"}

16],

17 "name": "Markus Lanthaler",

18 "homepage": "http://www.tugraz.at/"

19 }

Listing 1. An exemplary JSON-LD document

1 [{

2 "@id": "http://me.markus-lanthaler.com",

3 "@type":"http://xmlns.com/foaf/0.1/Person",

4 "http://xmlns.com/foaf/0.1/title": [

5 {"@value":"Dipl.Ing.", "@language":"de"},

6 {"@value":"MSc", "@language": "en"}

7],

8 "http://xmlns.com/foaf/0.1/name":

9 ["Markus Lanthaler"],

10 "http://xmlns.com/foaf/0.1/ ↵
 workplaceHomepage":

11 [{ "@id": "http://www.tugraz.at/" }]

12 }]

Listing 2. The expanded form of the document in Listing 1

process the data, JSON-LD specifies two special document

forms: expanded and compacted.

The expanded form (Listing 2) is a JSON-LD document where all

terms and prefixes have been expanded into full IRIs and all type

and language coercions are defined inline so that the context can

be eliminated from the document without losing any information.

It can thus be seen as an explicit version of the document. To

assure that the resulting expanded document is easy to work with,

also all properties that allow multiple values are converted to

array form. This is necessary as different properties in a JSON-LD

document might map to the same IRI that requires their values to

be merged. The more or less reverse process is compaction. It

takes a JSON-LD document and applies a user-specified context

to generate the most compact representation of a document, i.e.,

all full IRIs are translated to short terms (as specified in the

supplied context) and all array values with a single entry are

unwrapped from that array form. Compacting Listing 2 with the

context used in Listing 1 would result in a document equal to

Listing 1. Please note, however, that compaction is not always the

exact inverse operation for expansion – it is, e.g., impossible to

split properties that have been merged to the same full IRI in

expansion. Since expansion and compaction can be used together,

applications can use them to harmonize data representations by

translating between different contexts. For greater flexibility,

JSON-LD also defines a framing API method [29] which allows a

developer to transform a document into a form that is convenient

to process for a specific application. The developer defines a

frame, i.e., a template, which is then used to restructure the data

contained in an arbitrary JSON-LD document into the desired

form. This allows the developer to subsequently work with the

framed document just as with any other JSON document which

means that usually all existing JSON tools and workflows can be

retained.

Conversion of a JSON-LD document, especially one in the

expanded form, to RDF triples is straightforward. A subject,

which could also be used as an object in another triple, is defined

by @id. All other JSON-LD properties are converted to

predicates. Finally, literal values are either taken directly from a

property’s value, or created by taking the value of @value and

adding language (@language) and/or type information (@type).

The example in Listing 1 could thus be converted to, e.g., a Turtle

document as shown in Listing 3.

4. EVOLVABLE RESTFUL SERVICES

WITH JSON-LD
As mentioned in the introduction, the Hypermedia as the Engine

of Application State (HATEOAS) constraint is one of the least

understood constraints, and thus seldom implemented correctly.

Annoyed by the fact that a lot of services claim to be RESTful

regardless of violating the hypermedia constraint, Fielding [30]

made it very clear that hypermedia is a fundamental requirement

but since the term REST is so widely misused, there are efforts in

the community to look for an alternative term, such as

Hypermedia API, to denote truly RESTful services.

A lot of systems, regardless of claiming to be RESTful, rely

heavily on implicit state control-flow which is characteristic of the

RPC-style. The allowed messages and how they have to be inter-

preted depends on previously exchanged messages and thus in

which implicit state the system is in. Third parties or interme-

diaries trying to interpret the conversation need the full state

transition table and the initial state to understand the communi-

cation which is often not available or not practical. This also

makes it difficult or virtually impossible to recover from partial

failures in such distributed systems.

To solve these issues and assure evolvability, the use of hyper-

media is a core tenet of the REST architectural style. It refers to

the use of hypermedia controls in resource representations as a

way of navigating the state machine of an application. “A REST

API should be entered with no prior knowledge beyond the initial

URI (bookmark) and set of standardized media types. […] From

that point on, all application state transitions must be driven by

client selection of server-provided choices that are present in the

received representations or implied by the user’s manipulation of

those representations.” [30] While the human Web is unques-

tionably based on this type of interaction and state control-flow

where very little is known a priori, machine-to-machine commu-

nication is often based on static contracts and out-of-band

knowledge resulting in tight coupling. Such approaches might

work in the short term but are condemned to break in the long

term since assumptions about server resources will break even-

tually as resources evolve over time. Parastatidis et al. [31] define

the set of legal interactions necessary to achieve a specific,

application-dependent goal as the domain application protocol of

a service. The protocol defines the interaction rules between the

different participants. Consequently, the application state is a

snapshot of the system at an instant in time. This coincides with

Fielding’s definition [1] of application state which defines it as the

“pending requests, the topology of connected components (some

of which may be filtering buffered data), the active requests on

those connectors, the data flow of representations in response to

those requests, and the processing of those representations as they

are received by the user agent.” Accordingly, the overall system

state consists of the application state and the server state. By using

the notion of a domain application protocol the phrase

“hypermedia as the engine of application state” can now be

explained as the use of hypermedia controls to advertise valid

state transitions at runtime instead of agreeing on static contracts

at design time. Changes in the domain application protocol can

thus be dynamically communicated to clients. This brings some of

the human Web’s adaptivity to the Web of machines and allows

the building of loosely coupled and evolvable systems. Rather

than requiring an understanding of a specific IRI structure, clients

only need to understand the semantics or business context in

which a link appears [31].

The creation of a truly RESTful service can be dramatically sim-

plified by the use of a well-defined, generic media type with

inherent hypermedia support. Developers can then fully con-

1 @prefix rdf: <http://www.w3.org/1999/02/22-

 rdf-syntax-ns#> .

2 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

3

4 <http://me.markus-lanthaler.com>

5 rdf:type foaf:Person ;

6 foaf:title

7 "Dipl.Ing."@de ,

8 "MSc"@en ;

9 foaf:name "Markus Lanthaler" ;

10 foaf:workplaceHomepage

11 <http://www.tugraz.at/> .

Listing 3. Triples extracted from Listing 1 converted to Turtle

centrate on defining the domain application protocol instead of

having to design new media types which often are specializations

of existing syntaxes. This can be compared to the omnipresence of

HTML and browsers in the human Web where such standar-

dization is already well advanced. JSON-LD was specifically

designed for such purposes. It has built-in support for domain

semantics yet its syntax is completely independent thereof. A

developer can thus use JSON-LD as a generic media type for a

broad range of applications. If Semantic Web technologies, i.e.,

ontologies, are used to express the domain application protocol, it

is possible to leverage the rich underlying model and existing

tools for tasks such as data validation or even to make implicit

knowledge explicit. This standardization allows the development

process to be further streamlined as it enables the creation of

reusable client libraries.

The core process to create a RESTful service would then be to

define and describe the application semantics. Every concept gets

assigned an IRI where the definition of that concept can be looked

up. Please note that this process is almost the same as the one

chosen by, e.g., Atom. The only difference is that instead of

requiring out-of-band knowledge to look up the link relation’s

semantics, i.e., the knowledge about the IANA registry [32], the

semantics can be directly accessed by simply dereferencing the

IRI. A developer could then go a step further and describe the

semantics in a machine processable way. It would, e.g., be

possible to describe the allowed value range for a property by

using OWL [33], a standardized ontology. This would also make

it possible to automatically check the consistency of a domain

application protocol and to generate human readable docu-

mentation from it. Clearly, this goes far beyond what is achievable

with the traditional definition of media types as the descriptions

can be reasoned with by computer programs.

As a real-world proof of concept for the principles described in

this paper, we have designed and implemented a Web of Things

consisting of a central management unit and nodes equipped with

sensors and actuators. It clearly illustrates the way in which such a

distributed system can be modeled and implemented by using

JSON-LD and Semantic Web technologies. For example, assume

we have a node in each room with a door sensor and an air condi-

tioner connected to it. An application running on the management

unit could then be programmed to turn the air conditioner off

when the door is open.

Figure 2 illustrates how the management unit and the nodes would

interact. First, the management unit would establish a connection

to the node’s entry point. The response could contain a represen-

tation as shown in Listing 4 (context defined externally for the

sake of brevity). In the next step, the application on the manage-

ment unit would choose which link to follow. Instead of having to

rely on type information (line 12), it would also be possible to

create a more specific property than just sensors; this is a

decision the domain application protocol designer has to take.

Given that the application is interested in the door sensor, it would

dereference the link in line 11 and the node would return a repre-

sentation similar to the one shown in Listing 5. Finally, the

management unit would add its own callback IRI to the list of

subscribers (lines 7-10). As soon as the reading of the sensor

changes, the node would notify all subscribers, which at this point

includes the management unit. This would then trigger a process

similar to the one just described, but this time, the management

unit would look up the air conditioner and update its represen-

tation to turn it off.

Management
unit

Node

GET /

GET /door

PUT /door

POST /callback

GET /

GET /ac

PUT /ac

Access entry point to
explore service

Retrieve door sensor data

Register callback IRI, i.e.,
subscribe to updates

Notify about sensor event

Entry point (cached)

Access air conditioner

Switch off air conditioner

Figure 2. Interaction between management unit and node

1 {

2 "@context": "http://api.com/dap.jsonld",

3 "@id": "/",

4 "location": "http://api.com/room/48",

5 "sensors": [

6 {

7 "@id": "/temperature",

8 "@type": "dap:TemperatureSensor"

9 },

10 {

11 "@id": "/door",

12 "@type": "dap:DoorSensor"

13 }

14],

15 "actuators": [

16 {

17 "@id": "/ac",

18 "@type": "dap:AirConditioner"

19 }

20]

21 }

Listing 4. The node's “homepage”

1 {

2 "@context": "http://api.com/dap.jsonld",

3 "@id": "/door",

4 "@type": "dap:DoorSensor",

5 "node": "/",

6 "reading": "dap:closed",

7 "subscribers": [

8 "http://log.example.com/",

9 "http://accesscontrol.example.com/"

10]

11 }

Listing 5. The door sensor data

While this seems overly chatty, it is worth noting that responses

can be cached and that the developer is free to optimize represen-

tations to reduce the number of required roundtrips. For example,

Listing 4 can be cached for long periods as it is not expected to

change often. Alternatively, it could be heavily optimized to a

form similar to the one shown in Listing 6 where all the required

data is directly embedded into the “homepage” instead of being

transcluded; obviously this renders caching almost useless as the

representation would change continuously. Such an optimization

can be compared to the use of image sprites or data URIs in

HTML pages to reduce the number of required HTTP requests.

Whilst it is completely acceptable for a service to make such

structural changes, semantic changes to the domain application

protocol have to be carefully evaluated as they might change the

contract and break existing consumers relying on them.

If OWL’s expressivity is used to describe the relationships

between different resources, much smarter clients can be built. It

is, e.g., possible to create a generic crawler which indexes all

available sensors; by leveraging OWL’s class hierarchy this

would also work for sensor types that are still unknown at design

time. Similarly, a logging service can be created that stores

reported sensor readings. It is enough if such a service under-

stands which property contains the reading; it is not necessary that

it understands the reading itself. Such flexibility greatly contri-

butes to the extensibility and evolvability of a system.

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented JSON-LD, a community effort to stan-

dardize Linked Data in JSON. In contrast to previous approaches,

great efforts have been made to keep the approach as simple as

possible and to create a syntax that results in serializations that

follow the structure of how JSON is typically used by Web de-

velopers. The syntax is 100% compatible with JSON and flexible

enough to provide a smooth upgrade path for existing infra-

structure. This means that developers have to change neither their

workflows nor their existing tools and programming libraries. We

hope this lowers the entry barrier to publish Linked Data in the

form of RESTful services and results in a broader adoption of the

underlying ideas and principles. The additional design costs are

significantly outweighed by the achievable benefits in terms of

loose coupling, evolvability, scalability, self-descriptiveness, and

maintainability. Our experiments in the context of a large-scale

Web of Things project have delivered proofs that the presented

approach is practical. In fact, JSON-LD could be a first step

toward standardizing semantic RESTful Web services and could

form the basis for various efforts that previously could not seem

to find any common ground. By working with a community with

different backgrounds, we hope to be able to create a balanced

solution that builds on the efforts put into RDF in the last decade

while having the potential to positively affect the Web as a whole.

Given that JSON-LD is still a work in progress, we would like to

take the chance to invite the interested reader to join the

community at http://www.json-ld.org.

As we have shown, JSON-LD itself is not a complete technology

stack – it needs ontologies to express domain semantics. In future

work we would like to investigate how a lightweight ontology to

support a wide range of application domains could be modeled.

Furthermore, we would like to explore various ideas to create

smarter service clients.

6. REFERENCES

[1] R.T. Fielding, “Architectural styles and the design of

network-based software architectures,” PhD dissertation,

Department of Information and Computer Science,

University of California, Irvine, 2000.

[2] C. Pautasso and E. Wilde, “Why is the Web Loosely

Coupled? A Multi-Faceted Metric for Service Design,” in

Proceedings of the 18th International Conference on World

Wide Web (WWW), 2009, pp. 911-920.

[3] The Atom Syndication Format. [Online]. Available:

http://tools.ietf.org/html/rfc4287.

[4] The Atom Publishing Protocol. [Online]. Available:

http://tools.ietf.org/html/rfc5023.

[5] Open Data Protocol. [Online]. Available:

http://www.odata.org/.

[6] Google Data Protocol. [Online]. Available:

http://code.google.com/apis/gdata/.

[7] M. Lanthaler and C. Gütl, “SAPS: Semantic AtomPub-based

Services,” in Proceedings of the 11th IEEE/IPSJ

International Symposium on Applications and the Internet

(SAINT), 2011, pp. 382-387.

[8] T. Vitvar and J. Musser, “ProgrammableWeb.com: Statistics,

trends, and best practices,” Keynote of the Web APIs and

Service Mashups Workshop at the European Conference on

Web Services, 2010.

[9] RDF/JSON, Talis Systems Ltd., 2011. [Online]. Available:

http://docs.api.talis.com/platform-api/output-types/rdf-json.

[Accessed: 15-Jan-2012].

1 {

2 "@context": "http://api.com/dap.jsonld",

3 "@id": "/",

4 "location": "http://api.com/room/48",

5 "sensors": [

6 {

7 "@id": "/temperature",

8 "@type": "dap:TemperatureSensor",

9 "reading": 32.5,

10 "subscribers": []

11 },

12 {

13 "@id": "/door",

14 "@type": "dap:DoorSensor",

15 "reading": "dap:closed",

16 "subscribers": [

17 "http://log.example.com/",

18 "http://accesscontrol.example.com/"

19]

20 }

21],

22 "actuators": [

23 {

24 "@id": "/ac",

25 "@type": "dap:AirConditioner",

26 "status": "dap:off"

27 }

28]

29 }

Listing 6. Optimization of Listing 4 with embedded resources

aiming to reduce the number of required HTTP requests

[10] K. Zyp and G. Court, “JSON Schema”, 2010. [Online].

Available: http://tools.ietf.org/html/draft-zyp-json-

schema-03. [Accessed: 18-Jan-2011].

[11] P. Bryan and K. Zyp, “JSON Reference”, 2011. [Online].

Available: http://tools.ietf.org/html/draft-pbryan-zyp-json-

ref-01. [Accessed: 20-Dec-2011].

[12] M. Kelly, “HAL - Hypertext Application Language”, 2011.

[Online]. Available: http://stateless.co/hal_specification.html.

[Accessed: 20-Dec-2011].

[13] M. Amundsen, “Collection+JSON - Document Format”,

2011. [Online]. Available: http://amundsen.com/media-

types/collection/format/. [Accessed: 24-Oct-2011].

[14] Y. Goland, “Adding Namespaces to JSON”, 2006. [Online].

Available: http://www.goland.org/jsonnamespace/.

[Accessed: 05-Jan-2012].

[15] T. Berners-Lee, “Linked Data,” Design Issues for the World

Wide Web, 2006. [Online]. Available:

http://www.w3.org/DesignIssues/LinkedData.html.

[Accessed: 06-Jun-2010].

[16] RDF Working Group, “JSON Serializations by Example”,

2011. [Online]. Available: http://www.w3.org/2011/rdf-

wg/wiki/JSON-Serialization-Examples.

[Accessed: 28-Jul-2011].

[17] K. R. Page, D. C. De Roure, and K. Martinez, “REST and

Linked Data: a match made for domain driven

development?” in Proceedings of the 2nd International

Workshop on RESTful Design (WS-REST), 2011, pp. 22-25.

[18] M. Lanthaler and C. Gütl, “A Semantic Description

Language for RESTful Data Services to Combat

Semaphobia,” in Proceedings of the 2011 5th IEEE

International Conference on Digital Ecosystems and

Technologies (DEST), 2011, pp. 47-53.

[19] RDF/XML Syntax Specification (Revised). [Online].

Available: http://www.w3.org/TR/2004/REC-rdf-syntax-

grammar-20040210/.

[20] RDFa in XHTML: Syntax and Processing. [Online].

Available: http://www.w3.org/TR/2008/REC-rdfa-

syntax-20081014.

[21] M. Sporny, “Linked JSON: RDF for the Masses,” The

Beautiful, Tormented Machine, 2011. [Online]. Available:

http://manu.sporny.org/2011/linked-json/.

[Accessed: 28-Apr-2011].

[22] I. Herman, “W3C Workshop — RDF Next Steps Workshop

Report,” 2010. [Online]. Available:

http://www.w3.org/2009/12/rdf-ws/Report.html.

[Accessed: 05-Aug-2010].

[23] T. Steiner, “JSON Emergency Brake,” RDF Working Group

mailing list, 2011. [Online]. Available:

http://lists.w3.org/Archives/Public/public-rdf-

wg/2011Aug/0131.html. [Accessed: 23-Aug-2011].

[24] JSON for Linking Data Community Group, W3C Community

and Business Groups. [Online]. Available:

http://www.w3.org/community/json-ld/.

[25] JSON-LD - Linked Data Expression in JSON, Unofficial

Draft 30 May 2010. [Online]. Available: http://json-

ld.org/spec/ED/json-ld-syntax/20100529/.

[26] JSON-LD Syntax 1.0, Unofficial Draft 26 April 2012.

[Online]. Available: http://json-ld.org/spec/ED/json-ld-

syntax/20120426/.

[27] D. Brickley and L. Miller, FOAF Vocabulary Specification

0.98. 2010. [Online]. Available: http://xmlns.com/foaf/spec/.

[Accessed: 17-Jan-2011].

[28] L. Dodds and I. Davis, Linked Data Patterns - A pattern

catalogue for modelling, publishing, and consuming Linked

Data, 2011, pp. 44-55. [Online]. Available:

http://patterns.dataincubator.org/book/linked-data-

patterns.pdf. [Accessed: 07-Oct-2011].

[29] The JSON-LD API 1.0, Unofficial Draft 26 April 2012.

[Online]. Available: http://json-ld.org/spec/ED/json-ld-

api/20120426/.

[30] R. T. Fielding, “REST APIs must be hypertext-driven,”

Untangled musings of Roy T. Fielding, 2008. [Online].

Available: http://roy.gbiv.com/untangled/2008/rest-apis-

must-be-hypertext-driven. [Accessed: 02-Jun-2010].

[31] S. Parastatidis, J. Webber, G. Silveira, and I. S. Robinson,

“The Role of Hypermedia in Distributed System

Development,” in Proceedings of the 1st International

Workshop on RESTful Design (WS-REST), 2010, pp. 16-22.

[32] Link Relations, IANA. [Online]. Available:

http://www.iana.org/assignments/link-relations/link-

relations.xml.

[33] OWL 2 Web Ontology Language. [Online]. Available:

http://www.w3.org/TR/2009/REC-owl2-primer-20091027/.

