Added script front-end for primer-design code
[htsworkflow.git] / htswanalysis / MACS / lib / gsl / gsl-1.11 / poly / solve_cubic.c
1 /* poly/solve_cubic.c
2  * 
3  * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough
4  * 
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 3 of the License, or (at
8  * your option) any later version.
9  * 
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License for more details.
14  * 
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18  */
19
20 /* solve_cubic.c - finds the real roots of x^3 + a x^2 + b x + c = 0 */
21
22 #include <config.h>
23 #include <math.h>
24 #include <gsl/gsl_math.h>
25 #include <gsl/gsl_poly.h>
26
27 #define SWAP(a,b) do { double tmp = b ; b = a ; a = tmp ; } while(0)
28
29 int 
30 gsl_poly_solve_cubic (double a, double b, double c, 
31                       double *x0, double *x1, double *x2)
32 {
33   double q = (a * a - 3 * b);
34   double r = (2 * a * a * a - 9 * a * b + 27 * c);
35
36   double Q = q / 9;
37   double R = r / 54;
38
39   double Q3 = Q * Q * Q;
40   double R2 = R * R;
41
42   double CR2 = 729 * r * r;
43   double CQ3 = 2916 * q * q * q;
44
45   if (R == 0 && Q == 0)
46     {
47       *x0 = - a / 3 ;
48       *x1 = - a / 3 ;
49       *x2 = - a / 3 ;
50       return 3 ;
51     }
52   else if (CR2 == CQ3) 
53     {
54       /* this test is actually R2 == Q3, written in a form suitable
55          for exact computation with integers */
56
57       /* Due to finite precision some double roots may be missed, and
58          considered to be a pair of complex roots z = x +/- epsilon i
59          close to the real axis. */
60
61       double sqrtQ = sqrt (Q);
62
63       if (R > 0)
64         {
65           *x0 = -2 * sqrtQ  - a / 3;
66           *x1 = sqrtQ - a / 3;
67           *x2 = sqrtQ - a / 3;
68         }
69       else
70         {
71           *x0 = - sqrtQ  - a / 3;
72           *x1 = - sqrtQ - a / 3;
73           *x2 = 2 * sqrtQ - a / 3;
74         }
75       return 3 ;
76     }
77   else if (CR2 < CQ3) /* equivalent to R2 < Q3 */
78     {
79       double sqrtQ = sqrt (Q);
80       double sqrtQ3 = sqrtQ * sqrtQ * sqrtQ;
81       double theta = acos (R / sqrtQ3);
82       double norm = -2 * sqrtQ;
83       *x0 = norm * cos (theta / 3) - a / 3;
84       *x1 = norm * cos ((theta + 2.0 * M_PI) / 3) - a / 3;
85       *x2 = norm * cos ((theta - 2.0 * M_PI) / 3) - a / 3;
86       
87       /* Sort *x0, *x1, *x2 into increasing order */
88
89       if (*x0 > *x1)
90         SWAP(*x0, *x1) ;
91       
92       if (*x1 > *x2)
93         {
94           SWAP(*x1, *x2) ;
95           
96           if (*x0 > *x1)
97             SWAP(*x0, *x1) ;
98         }
99       
100       return 3;
101     }
102   else
103     {
104       double sgnR = (R >= 0 ? 1 : -1);
105       double A = -sgnR * pow (fabs (R) + sqrt (R2 - Q3), 1.0/3.0);
106       double B = Q / A ;
107       *x0 = A + B - a / 3;
108       return 1;
109     }
110 }