Imported Upstream version 0.6
[pysam.git] / samtools / bam2bcf_indel.c.pysam.c
1 #include "pysam.h"
2
3 #include <assert.h>
4 #include <ctype.h>
5 #include <string.h>
6 #include "bam.h"
7 #include "bam2bcf.h"
8 #include "kaln.h"
9 #include "kprobaln.h"
10 #include "khash.h"
11 KHASH_SET_INIT_STR(rg)
12
13 #include "ksort.h"
14 KSORT_INIT_GENERIC(uint32_t)
15
16 #define MINUS_CONST 0x10000000
17 #define INDEL_WINDOW_SIZE 50
18
19 void *bcf_call_add_rg(void *_hash, const char *hdtext, const char *list)
20 {
21         const char *s, *p, *q, *r, *t;
22         khash_t(rg) *hash;
23         if (list == 0 || hdtext == 0) return _hash;
24         if (_hash == 0) _hash = kh_init(rg);
25         hash = (khash_t(rg)*)_hash;
26         if ((s = strstr(hdtext, "@RG\t")) == 0) return hash;
27         do {
28                 t = strstr(s + 4, "@RG\t"); // the next @RG
29                 if ((p = strstr(s, "\tID:")) != 0) p += 4;
30                 if ((q = strstr(s, "\tPL:")) != 0) q += 4;
31                 if (p && q && (t == 0 || (p < t && q < t))) { // ID and PL are both present
32                         int lp, lq;
33                         char *x;
34                         for (r = p; *r && *r != '\t' && *r != '\n'; ++r); lp = r - p;
35                         for (r = q; *r && *r != '\t' && *r != '\n'; ++r); lq = r - q;
36                         x = calloc((lp > lq? lp : lq) + 1, 1);
37                         for (r = q; *r && *r != '\t' && *r != '\n'; ++r) x[r-q] = *r;
38                         if (strstr(list, x)) { // insert ID to the hash table
39                                 khint_t k;
40                                 int ret;
41                                 for (r = p; *r && *r != '\t' && *r != '\n'; ++r) x[r-p] = *r;
42                                 x[r-p] = 0;
43                                 k = kh_get(rg, hash, x);
44                                 if (k == kh_end(hash)) k = kh_put(rg, hash, x, &ret);
45                                 else free(x);
46                         } else free(x);
47                 }
48                 s = t;
49         } while (s);
50         return hash;
51 }
52
53 void bcf_call_del_rghash(void *_hash)
54 {
55         khint_t k;
56         khash_t(rg) *hash = (khash_t(rg)*)_hash;
57         if (hash == 0) return;
58         for (k = kh_begin(hash); k < kh_end(hash); ++k)
59                 if (kh_exist(hash, k))
60                         free((char*)kh_key(hash, k));
61         kh_destroy(rg, hash);
62 }
63
64 static int tpos2qpos(const bam1_core_t *c, const uint32_t *cigar, int32_t tpos, int is_left, int32_t *_tpos)
65 {
66         int k, x = c->pos, y = 0, last_y = 0;
67         *_tpos = c->pos;
68         for (k = 0; k < c->n_cigar; ++k) {
69                 int op = cigar[k] & BAM_CIGAR_MASK;
70                 int l = cigar[k] >> BAM_CIGAR_SHIFT;
71                 if (op == BAM_CMATCH || op == BAM_CEQUAL || op == BAM_CDIFF) {
72                         if (c->pos > tpos) return y;
73                         if (x + l > tpos) {
74                                 *_tpos = tpos;
75                                 return y + (tpos - x);
76                         }
77                         x += l; y += l;
78                         last_y = y;
79                 } else if (op == BAM_CINS || op == BAM_CSOFT_CLIP) y += l;
80                 else if (op == BAM_CDEL || op == BAM_CREF_SKIP) {
81                         if (x + l > tpos) {
82                                 *_tpos = is_left? x : x + l;
83                                 return y;
84                         }
85                         x += l;
86                 }
87         }
88         *_tpos = x;
89         return last_y;
90 }
91 // FIXME: check if the inserted sequence is consistent with the homopolymer run
92 // l is the relative gap length and l_run is the length of the homopolymer on the reference
93 static inline int est_seqQ(const bcf_callaux_t *bca, int l, int l_run)
94 {
95         int q, qh;
96         q = bca->openQ + bca->extQ * (abs(l) - 1);
97         qh = l_run >= 3? (int)(bca->tandemQ * (double)abs(l) / l_run + .499) : 1000;
98         return q < qh? q : qh;
99 }
100
101 static inline int est_indelreg(int pos, const char *ref, int l, char *ins4)
102 {
103         int i, j, max = 0, max_i = pos, score = 0;
104         l = abs(l);
105         for (i = pos + 1, j = 0; ref[i]; ++i, ++j) {
106                 if (ins4) score += (toupper(ref[i]) != "ACGTN"[(int)ins4[j%l]])? -10 : 1;
107                 else score += (toupper(ref[i]) != toupper(ref[pos+1+j%l]))? -10 : 1;
108                 if (score < 0) break;
109                 if (max < score) max = score, max_i = i;
110         }
111         return max_i - pos;
112 }
113
114 int bcf_call_gap_prep(int n, int *n_plp, bam_pileup1_t **plp, int pos, bcf_callaux_t *bca, const char *ref,
115                                           const void *rghash)
116 {
117         int i, s, j, k, t, n_types, *types, max_rd_len, left, right, max_ins, *score1, *score2, max_ref2;
118         int N, K, l_run, ref_type, n_alt;
119         char *inscns = 0, *ref2, *query, **ref_sample;
120         khash_t(rg) *hash = (khash_t(rg)*)rghash;
121         if (ref == 0 || bca == 0) return -1;
122         // mark filtered reads
123         if (rghash) {
124                 N = 0;
125                 for (s = N = 0; s < n; ++s) {
126                         for (i = 0; i < n_plp[s]; ++i) {
127                                 bam_pileup1_t *p = plp[s] + i;
128                                 const uint8_t *rg = bam_aux_get(p->b, "RG");
129                                 p->aux = 1; // filtered by default
130                                 if (rg) {
131                                         khint_t k = kh_get(rg, hash, (const char*)(rg + 1));
132                                         if (k != kh_end(hash)) p->aux = 0, ++N; // not filtered
133                                 }
134                         }
135                 }
136                 if (N == 0) return -1; // no reads left
137         }
138         // determine if there is a gap
139         for (s = N = 0; s < n; ++s) {
140                 for (i = 0; i < n_plp[s]; ++i)
141                         if (plp[s][i].indel != 0) break;
142                 if (i < n_plp[s]) break;
143         }
144         if (s == n) return -1; // there is no indel at this position.
145         for (s = N = 0; s < n; ++s) N += n_plp[s]; // N is the total number of reads
146         { // find out how many types of indels are present
147                 int m, n_alt = 0, n_tot = 0;
148                 uint32_t *aux;
149                 aux = calloc(N + 1, 4);
150                 m = max_rd_len = 0;
151                 aux[m++] = MINUS_CONST; // zero indel is always a type
152                 for (s = 0; s < n; ++s) {
153                         for (i = 0; i < n_plp[s]; ++i) {
154                                 const bam_pileup1_t *p = plp[s] + i;
155                                 if (rghash == 0 || p->aux == 0) {
156                                         ++n_tot;
157                                         if (p->indel != 0) {
158                                                 ++n_alt;
159                                                 aux[m++] = MINUS_CONST + p->indel;
160                                         }
161                                 }
162                                 j = bam_cigar2qlen(&p->b->core, bam1_cigar(p->b));
163                                 if (j > max_rd_len) max_rd_len = j;
164                         }
165                 }
166                 ks_introsort(uint32_t, m, aux);
167                 // squeeze out identical types
168                 for (i = 1, n_types = 1; i < m; ++i)
169                         if (aux[i] != aux[i-1]) ++n_types;
170                 if (n_types == 1 || (double)n_alt / n_tot < bca->min_frac || n_alt < bca->min_support) { // then skip
171                         free(aux); return -1;
172                 }
173                 if (n_types >= 64) {
174                         free(aux);
175                         if (bam_verbose >= 2) 
176                                 fprintf(pysamerr, "[%s] excessive INDEL alleles at position %d. Skip the position.\n", __func__, pos + 1);
177                         return -1;
178                 }
179                 types = (int*)calloc(n_types, sizeof(int));
180                 t = 0;
181                 types[t++] = aux[0] - MINUS_CONST; 
182                 for (i = 1; i < m; ++i)
183                         if (aux[i] != aux[i-1])
184                                 types[t++] = aux[i] - MINUS_CONST;
185                 free(aux);
186                 for (t = 0; t < n_types; ++t)
187                         if (types[t] == 0) break;
188                 ref_type = t; // the index of the reference type (0)
189         }
190         { // calculate left and right boundary
191                 left = pos > INDEL_WINDOW_SIZE? pos - INDEL_WINDOW_SIZE : 0;
192                 right = pos + INDEL_WINDOW_SIZE;
193                 if (types[0] < 0) right -= types[0];
194                 // in case the alignments stand out the reference
195                 for (i = pos; i < right; ++i)
196                         if (ref[i] == 0) break;
197                 right = i;
198         }
199         /* The following block fixes a long-existing flaw in the INDEL
200          * calling model: the interference of nearby SNPs. However, it also
201          * reduces the power because sometimes, substitutions caused by
202          * indels are not distinguishable from true mutations. Multiple
203          * sequence realignment helps to increase the power.
204          */
205         { // construct per-sample consensus
206                 int L = right - left + 1, max_i, max2_i;
207                 uint32_t *cns, max, max2;
208                 char *ref0, *r;
209                 ref_sample = calloc(n, sizeof(void*));
210                 cns = calloc(L, 4);
211                 ref0 = calloc(L, 1);
212                 for (i = 0; i < right - left; ++i)
213                         ref0[i] = bam_nt16_table[(int)ref[i+left]];
214                 for (s = 0; s < n; ++s) {
215                         r = ref_sample[s] = calloc(L, 1);
216                         memset(cns, 0, sizeof(int) * L);
217                         // collect ref and non-ref counts
218                         for (i = 0; i < n_plp[s]; ++i) {
219                                 bam_pileup1_t *p = plp[s] + i;
220                                 bam1_t *b = p->b;
221                                 uint32_t *cigar = bam1_cigar(b);
222                                 uint8_t *seq = bam1_seq(b);
223                                 int x = b->core.pos, y = 0;
224                                 for (k = 0; k < b->core.n_cigar; ++k) {
225                                         int op = cigar[k]&0xf;
226                                         int j, l = cigar[k]>>4;
227                                         if (op == BAM_CMATCH || op == BAM_CEQUAL || op == BAM_CDIFF) {
228                                                 for (j = 0; j < l; ++j)
229                                                         if (x + j >= left && x + j < right)
230                                                                 cns[x+j-left] += (bam1_seqi(seq, y+j) == ref0[x+j-left])? 1 : 0x10000;
231                                                 x += l; y += l;
232                                         } else if (op == BAM_CDEL || op == BAM_CREF_SKIP) x += l;
233                                         else if (op == BAM_CINS || op == BAM_CSOFT_CLIP) y += l;
234                                 }
235                         }
236                         // determine the consensus
237                         for (i = 0; i < right - left; ++i) r[i] = ref0[i];
238                         max = max2 = 0; max_i = max2_i = -1;
239                         for (i = 0; i < right - left; ++i) {
240                                 if (cns[i]>>16 >= max>>16) max2 = max, max2_i = max_i, max = cns[i], max_i = i;
241                                 else if (cns[i]>>16 >= max2>>16) max2 = cns[i], max2_i = i;
242                         }
243                         if ((double)(max&0xffff) / ((max&0xffff) + (max>>16)) >= 0.7) max_i = -1;
244                         if ((double)(max2&0xffff) / ((max2&0xffff) + (max2>>16)) >= 0.7) max2_i = -1;
245                         if (max_i >= 0) r[max_i] = 15;
246                         if (max2_i >= 0) r[max2_i] = 15;
247 //                      for (i = 0; i < right - left; ++i) fputc("=ACMGRSVTWYHKDBN"[(int)r[i]], pysamerr); fputc('\n', pysamerr);
248                 }
249                 free(ref0); free(cns);
250         }
251         { // the length of the homopolymer run around the current position
252                 int c = bam_nt16_table[(int)ref[pos + 1]];
253                 if (c == 15) l_run = 1;
254                 else {
255                         for (i = pos + 2; ref[i]; ++i)
256                                 if (bam_nt16_table[(int)ref[i]] != c) break;
257                         l_run = i;
258                         for (i = pos; i >= 0; --i)
259                                 if (bam_nt16_table[(int)ref[i]] != c) break;
260                         l_run -= i + 1;
261                 }
262         }
263         // construct the consensus sequence
264         max_ins = types[n_types - 1]; // max_ins is at least 0
265         if (max_ins > 0) {
266                 int *inscns_aux = calloc(4 * n_types * max_ins, sizeof(int));
267                 // count the number of occurrences of each base at each position for each type of insertion
268                 for (t = 0; t < n_types; ++t) {
269                         if (types[t] > 0) {
270                                 for (s = 0; s < n; ++s) {
271                                         for (i = 0; i < n_plp[s]; ++i) {
272                                                 bam_pileup1_t *p = plp[s] + i;
273                                                 if (p->indel == types[t]) {
274                                                         uint8_t *seq = bam1_seq(p->b);
275                                                         for (k = 1; k <= p->indel; ++k) {
276                                                                 int c = bam_nt16_nt4_table[bam1_seqi(seq, p->qpos + k)];
277                                                                 if (c < 4) ++inscns_aux[(t*max_ins+(k-1))*4 + c];
278                                                         }
279                                                 }
280                                         }
281                                 }
282                         }
283                 }
284                 // use the majority rule to construct the consensus
285                 inscns = calloc(n_types * max_ins, 1);
286                 for (t = 0; t < n_types; ++t) {
287                         for (j = 0; j < types[t]; ++j) {
288                                 int max = 0, max_k = -1, *ia = &inscns_aux[(t*max_ins+j)*4];
289                                 for (k = 0; k < 4; ++k)
290                                         if (ia[k] > max)
291                                                 max = ia[k], max_k = k;
292                                 inscns[t*max_ins + j] = max? max_k : 4;
293                         }
294                 }
295                 free(inscns_aux);
296         }
297         // compute the likelihood given each type of indel for each read
298         max_ref2 = right - left + 2 + 2 * (max_ins > -types[0]? max_ins : -types[0]);
299         ref2  = calloc(max_ref2, 1);
300         query = calloc(right - left + max_rd_len + max_ins + 2, 1);
301         score1 = calloc(N * n_types, sizeof(int));
302         score2 = calloc(N * n_types, sizeof(int));
303         bca->indelreg = 0;
304         for (t = 0; t < n_types; ++t) {
305                 int l, ir;
306                 kpa_par_t apf1 = { 1e-4, 1e-2, 10 }, apf2 = { 1e-6, 1e-3, 10 };
307                 apf1.bw = apf2.bw = abs(types[t]) + 3;
308                 // compute indelreg
309                 if (types[t] == 0) ir = 0;
310                 else if (types[t] > 0) ir = est_indelreg(pos, ref, types[t], &inscns[t*max_ins]);
311                 else ir = est_indelreg(pos, ref, -types[t], 0);
312                 if (ir > bca->indelreg) bca->indelreg = ir;
313 //              fprintf(pysamerr, "%d, %d, %d\n", pos, types[t], ir);
314                 // realignment
315                 for (s = K = 0; s < n; ++s) {
316                         // write ref2
317                         for (k = 0, j = left; j <= pos; ++j)
318                                 ref2[k++] = bam_nt16_nt4_table[(int)ref_sample[s][j-left]];
319                         if (types[t] <= 0) j += -types[t];
320                         else for (l = 0; l < types[t]; ++l)
321                                          ref2[k++] = inscns[t*max_ins + l];
322                         for (; j < right && ref[j]; ++j)
323                                 ref2[k++] = bam_nt16_nt4_table[(int)ref_sample[s][j-left]];
324                         for (; k < max_ref2; ++k) ref2[k] = 4;
325                         if (j < right) right = j;
326                         // align each read to ref2
327                         for (i = 0; i < n_plp[s]; ++i, ++K) {
328                                 bam_pileup1_t *p = plp[s] + i;
329                                 int qbeg, qend, tbeg, tend, sc, kk;
330                                 uint8_t *seq = bam1_seq(p->b);
331                                 uint32_t *cigar = bam1_cigar(p->b);
332                                 if (p->b->core.flag&4) continue; // unmapped reads
333                                 // FIXME: the following loop should be better moved outside; nonetheless, realignment should be much slower anyway.
334                                 for (kk = 0; kk < p->b->core.n_cigar; ++kk)
335                                         if ((cigar[kk]&BAM_CIGAR_MASK) == BAM_CREF_SKIP) break;
336                                 if (kk < p->b->core.n_cigar) continue;
337                                 // FIXME: the following skips soft clips, but using them may be more sensitive.
338                                 // determine the start and end of sequences for alignment
339                                 qbeg = tpos2qpos(&p->b->core, bam1_cigar(p->b), left,  0, &tbeg);
340                                 qend = tpos2qpos(&p->b->core, bam1_cigar(p->b), right, 1, &tend);
341                                 if (types[t] < 0) {
342                                         int l = -types[t];
343                                         tbeg = tbeg - l > left?  tbeg - l : left;
344                                 }
345                                 // write the query sequence
346                                 for (l = qbeg; l < qend; ++l)
347                                         query[l - qbeg] = bam_nt16_nt4_table[bam1_seqi(seq, l)];
348                                 { // do realignment; this is the bottleneck
349                                         const uint8_t *qual = bam1_qual(p->b), *bq;
350                                         uint8_t *qq;
351                                         qq = calloc(qend - qbeg, 1);
352                                         bq = (uint8_t*)bam_aux_get(p->b, "ZQ");
353                                         if (bq) ++bq; // skip type
354                                         for (l = qbeg; l < qend; ++l) {
355                                                 qq[l - qbeg] = bq? qual[l] + (bq[l] - 64) : qual[l];
356                                                 if (qq[l - qbeg] > 30) qq[l - qbeg] = 30;
357                                                 if (qq[l - qbeg] < 7) qq[l - qbeg] = 7;
358                                         }
359                                         sc = kpa_glocal((uint8_t*)ref2 + tbeg - left, tend - tbeg + abs(types[t]),
360                                                                         (uint8_t*)query, qend - qbeg, qq, &apf1, 0, 0);
361                                         l = (int)(100. * sc / (qend - qbeg) + .499); // used for adjusting indelQ below
362                                         if (l > 255) l = 255;
363                                         score1[K*n_types + t] = score2[K*n_types + t] = sc<<8 | l;
364                                         if (sc > 5) {
365                                                 sc = kpa_glocal((uint8_t*)ref2 + tbeg - left, tend - tbeg + abs(types[t]),
366                                                                                 (uint8_t*)query, qend - qbeg, qq, &apf2, 0, 0);
367                                                 l = (int)(100. * sc / (qend - qbeg) + .499);
368                                                 if (l > 255) l = 255;
369                                                 score2[K*n_types + t] = sc<<8 | l;
370                                         }
371                                         free(qq);
372                                 }
373 /*
374                                 for (l = 0; l < tend - tbeg + abs(types[t]); ++l)
375                                         fputc("ACGTN"[(int)ref2[tbeg-left+l]], pysamerr);
376                                 fputc('\n', pysamerr);
377                                 for (l = 0; l < qend - qbeg; ++l) fputc("ACGTN"[(int)query[l]], pysamerr);
378                                 fputc('\n', pysamerr);
379                                 fprintf(pysamerr, "pos=%d type=%d read=%d:%d name=%s qbeg=%d tbeg=%d score=%d\n", pos, types[t], s, i, bam1_qname(p->b), qbeg, tbeg, sc);
380 */
381                         }
382                 }
383         }
384         free(ref2); free(query);
385         { // compute indelQ
386                 int *sc, tmp, *sumq;
387                 sc   = alloca(n_types * sizeof(int));
388                 sumq = alloca(n_types * sizeof(int));
389                 memset(sumq, 0, sizeof(int) * n_types);
390                 for (s = K = 0; s < n; ++s) {
391                         for (i = 0; i < n_plp[s]; ++i, ++K) {
392                                 bam_pileup1_t *p = plp[s] + i;
393                                 int *sct = &score1[K*n_types], indelQ1, indelQ2, seqQ, indelQ;
394                                 for (t = 0; t < n_types; ++t) sc[t] = sct[t]<<6 | t;
395                                 for (t = 1; t < n_types; ++t) // insertion sort
396                                         for (j = t; j > 0 && sc[j] < sc[j-1]; --j)
397                                                 tmp = sc[j], sc[j] = sc[j-1], sc[j-1] = tmp;
398                                 /* errmod_cal() assumes that if the call is wrong, the
399                                  * likelihoods of other events are equal. This is about
400                                  * right for substitutions, but is not desired for
401                                  * indels. To reuse errmod_cal(), I have to make
402                                  * compromise for multi-allelic indels.
403                                  */
404                                 if ((sc[0]&0x3f) == ref_type) {
405                                         indelQ1 = (sc[1]>>14) - (sc[0]>>14);
406                                         seqQ = est_seqQ(bca, types[sc[1]&0x3f], l_run);
407                                 } else {
408                                         for (t = 0; t < n_types; ++t) // look for the reference type
409                                                 if ((sc[t]&0x3f) == ref_type) break;
410                                         indelQ1 = (sc[t]>>14) - (sc[0]>>14);
411                                         seqQ = est_seqQ(bca, types[sc[0]&0x3f], l_run);
412                                 }
413                                 tmp = sc[0]>>6 & 0xff;
414                                 indelQ1 = tmp > 111? 0 : (int)((1. - tmp/111.) * indelQ1 + .499); // reduce indelQ
415                                 sct = &score2[K*n_types];
416                                 for (t = 0; t < n_types; ++t) sc[t] = sct[t]<<6 | t;
417                                 for (t = 1; t < n_types; ++t) // insertion sort
418                                         for (j = t; j > 0 && sc[j] < sc[j-1]; --j)
419                                                 tmp = sc[j], sc[j] = sc[j-1], sc[j-1] = tmp;
420                                 if ((sc[0]&0x3f) == ref_type) {
421                                         indelQ2 = (sc[1]>>14) - (sc[0]>>14);
422                                 } else {
423                                         for (t = 0; t < n_types; ++t) // look for the reference type
424                                                 if ((sc[t]&0x3f) == ref_type) break;
425                                         indelQ2 = (sc[t]>>14) - (sc[0]>>14);
426                                 }
427                                 tmp = sc[0]>>6 & 0xff;
428                                 indelQ2 = tmp > 111? 0 : (int)((1. - tmp/111.) * indelQ2 + .499);
429                                 // pick the smaller between indelQ1 and indelQ2
430                                 indelQ = indelQ1 < indelQ2? indelQ1 : indelQ2;
431                                 if (indelQ > 255) indelQ = 255;
432                                 if (seqQ > 255) seqQ = 255;
433                                 p->aux = (sc[0]&0x3f)<<16 | seqQ<<8 | indelQ; // use 22 bits in total
434                                 sumq[sc[0]&0x3f] += indelQ < seqQ? indelQ : seqQ;
435 //                              fprintf(pysamerr, "pos=%d read=%d:%d name=%s call=%d indelQ=%d seqQ=%d\n", pos, s, i, bam1_qname(p->b), types[sc[0]&0x3f], indelQ, seqQ);
436                         }
437                 }
438                 // determine bca->indel_types[] and bca->inscns
439                 bca->maxins = max_ins;
440                 bca->inscns = realloc(bca->inscns, bca->maxins * 4);
441                 for (t = 0; t < n_types; ++t)
442                         sumq[t] = sumq[t]<<6 | t;
443                 for (t = 1; t < n_types; ++t) // insertion sort
444                         for (j = t; j > 0 && sumq[j] > sumq[j-1]; --j)
445                                 tmp = sumq[j], sumq[j] = sumq[j-1], sumq[j-1] = tmp;
446                 for (t = 0; t < n_types; ++t) // look for the reference type
447                         if ((sumq[t]&0x3f) == ref_type) break;
448                 if (t) { // then move the reference type to the first
449                         tmp = sumq[t];
450                         for (; t > 0; --t) sumq[t] = sumq[t-1];
451                         sumq[0] = tmp;
452                 }
453                 for (t = 0; t < 4; ++t) bca->indel_types[t] = B2B_INDEL_NULL;
454                 for (t = 0; t < 4 && t < n_types; ++t) {
455                         bca->indel_types[t] = types[sumq[t]&0x3f];
456                         memcpy(&bca->inscns[t * bca->maxins], &inscns[(sumq[t]&0x3f) * max_ins], bca->maxins);
457                 }
458                 // update p->aux
459                 for (s = n_alt = 0; s < n; ++s) {
460                         for (i = 0; i < n_plp[s]; ++i) {
461                                 bam_pileup1_t *p = plp[s] + i;
462                                 int x = types[p->aux>>16&0x3f];
463                                 for (j = 0; j < 4; ++j)
464                                         if (x == bca->indel_types[j]) break;
465                                 p->aux = j<<16 | (j == 4? 0 : (p->aux&0xffff));
466                                 if ((p->aux>>16&0x3f) > 0) ++n_alt;
467 //                              fprintf(pysamerr, "X pos=%d read=%d:%d name=%s call=%d type=%d q=%d seqQ=%d\n", pos, s, i, bam1_qname(p->b), p->aux>>16&63, bca->indel_types[p->aux>>16&63], p->aux&0xff, p->aux>>8&0xff);
468                         }
469                 }               
470         }
471         free(score1); free(score2);
472         // free
473         for (i = 0; i < n; ++i) free(ref_sample[i]);
474         free(ref_sample);
475         free(types); free(inscns);
476         return n_alt > 0? 0 : -1;
477 }